

IMPROVED METHOD OF USING HYDROGEN AND AMMONIA FUELS FOR AN INTERNAL COMBUSTION ENGINE

David Toyne, Presenter
Jay Schmuecker, Co-Author,
October 31, 2018

FUEL CELL OR ICE POWER

- Much discussion on using ammonia in fuel cell applications
- We think that Internal Combustion Engines (ICE) are a viable alternative
 - Especially over the next several years
- There are a number of factors that need to be considered in determining how carbon emission free vehicle applications will be implemented.
 - See 2015 NH3 Fuel Conference paper: "Comparison of Hydrogen Fueled Power Sources" that compared PEM fuel cells and several Hydrogen/Ammonia ICE configurations
 - The factors are identified on the next chart:

FUEL CELL/ICE FACTORS

- Vehicle Efficiency
- Costs
- Drive Train
- Exhaust noise
- Emissions
- Carbon Emissions
- Vehicle Acceleration
- Engine Tuning
- Vehicle Personnel Space Heating

- Hydrogen Generation
- Hydrogen Purity
- Hydrogen Costs
- Hydrogen Storage
- Ammonia Generation
- Expected Life
- Maintenance Personnel
- Repair Costs
- Service Interval
- Safety

CONSIDER

- Can the world supply raw materials to make over 50 million fuel cell powered vehicles annually?
- Using ICEs will speed the transition to the use of hydrogen as a fuel.
- We have demonstrated that ammonia can be used to fuel ICE powered vehicles.
 - Ammonia powered ICEs can be easily and quickly brought to market for transportation vehicles.
 - Speed to market is important if you consider the recent UN study on global warming.

TRACTOR

TRACTOR

The 50 gallon 200
 psi liquid ammonia
 tank at the front
 contains the energy
 in

2 of the 4 21" X 10' long 3000 psi hydrogen gas storage tanks.

DELIVERED TRACTOR ENGINE

- Fairly conventional Ford 460 block engine bored out to 9.4 Liter and 13.5 to 1 compression ratio.
- Engine RPM limited to 2500 because of tractor transmission limitations.
- Start and stop engine on hydrogen, and when warm run on 85-90% ammonia and 10-15% hydrogen.

ENGINE MODIFICATIONS

- Dual fuel Electronic Control Unit (ECU)
- Distributor replaced with 8 coils
- 8 injectors for "port injection" of hydrogen
- Two ammonia injectors in throttle body

AMMONIA INJECTION

 Two injectors are used to inject ammonia into the engine intake air.

ENGINE FUELING FLOW

CONCLUSION

- Hydrogen fueled ICEs, using ammonia as the carrier are an immediate, viable way to convert to a carbon emission free transportation vehicle fueling approach.
- The tractor performance has been significantly improved as a result of the described changes.
- More at SolarHydrogenSystem.com

