Performance of Ammonia–Natural Gas Co-fired Gas Turbine for Power Generation

Oct. 31st, 2018

IHI Corporation Shintaro Ito, Masahiro Uchida, Shogo Onishi, Toshiro Fujimori

Tohoku University Hideaki Kobayashi

Copyright © 2018 IHI Corporation All Rights Reserved.

IHI

Fossil fuel fired gas turbine (GT)

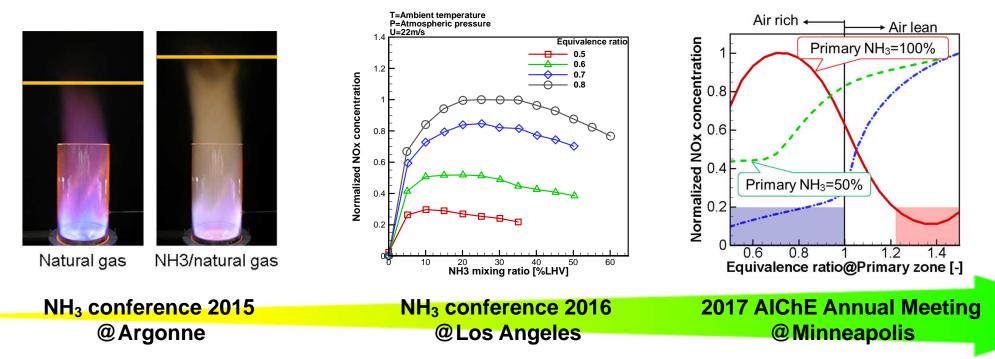
- O high thermal efficiency
- Δ large amounts of $\rm CO_2$
- \implies CO₂ reduction by (partial?) ammonia fueling

Difficulties in NH₃ co-fired gas turbine development

 \bigtriangleup Low combustion temperature and low flame speed

Flame blow-off, low combustion efficiency ...

- \triangle Complex reaction mechanism
- \implies Fuel-NO_x, De-NO_x mechanism


important to develop low emission combustion method suitable for ammonia

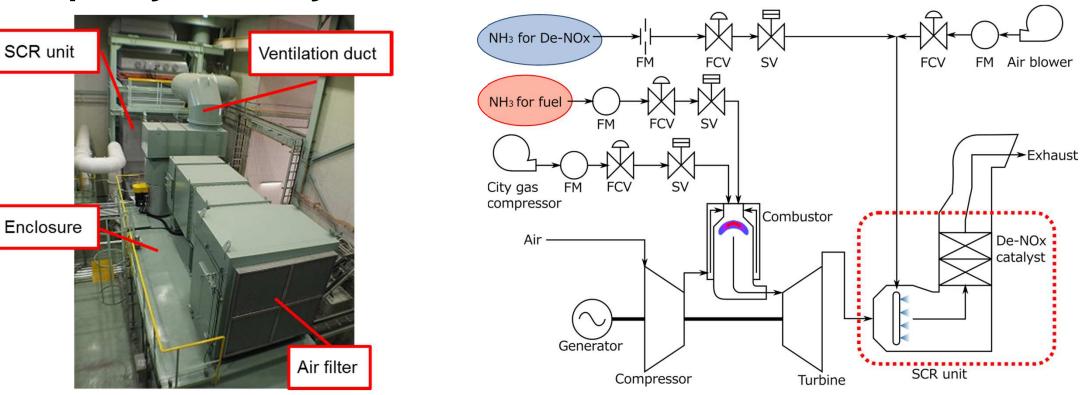
Objective

Previous work: Experimental and numerical study on combustion technology for low

emission NH₃/natural gas co-fired gas-turbine in a combustor

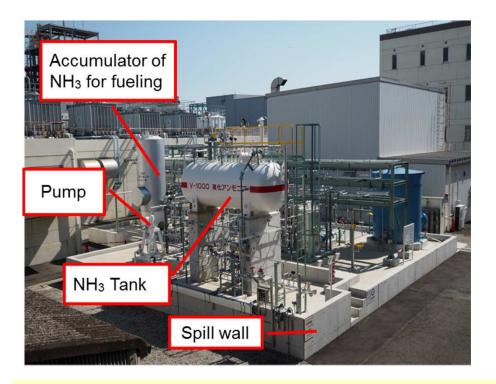
→ NH₃/natural gas co-fired two-stage combustor

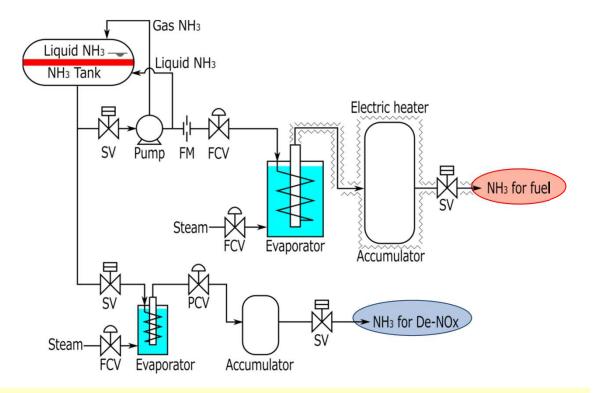
Present work: Power generation test using the two-stage combustor mounted


in an actual gas turbine

ltem	Value
Engine	IM270 manufactured by IHI Corporation
Power generation output	2MWe
Cycle	Simple cycle
NH ₃ mixing ratio	Maximum 20%LHV

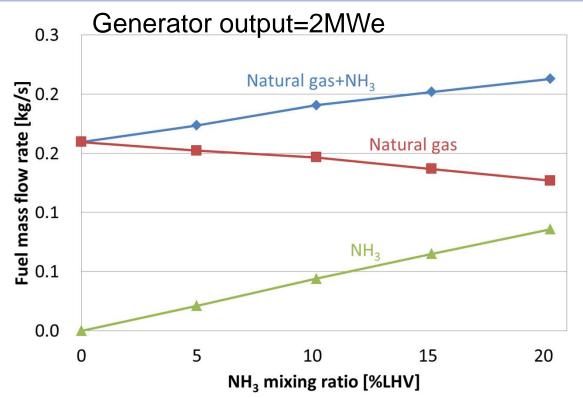
 NH_3 mixing ratio (based on LHV)


 $r_{NH_3}[\%LHV] = 100 \times \frac{\text{Energy input of NH}_3[kW]}{\text{Energy input of Natural gas}[kW] + \text{Energy input of NH}_3[kW]}$


Simple cycle GT system

- Adjustment of commercial engine for NH₃-firing only in connection with combustor
- Selective Catalytic Reduction (SCR) unit attached to engine exhaust for NOx reduction in exhaust gas
- Pressurized gasified NH₃ provided by NH₃ supply system

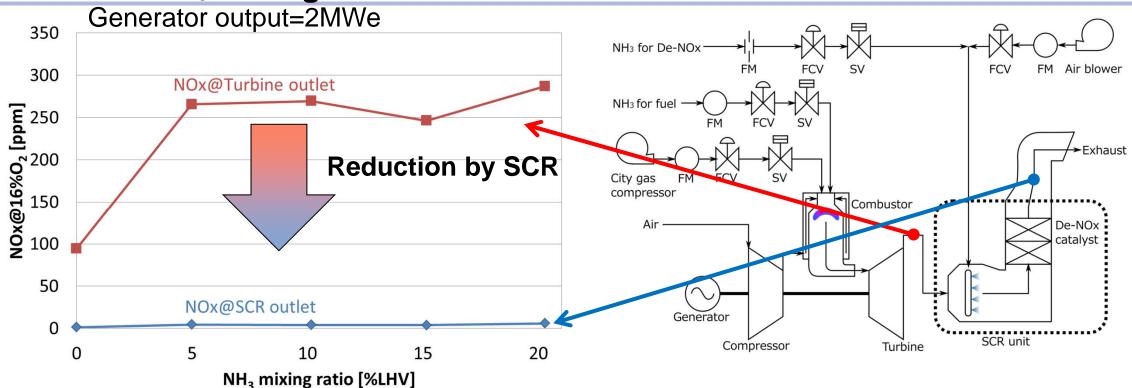
Supply system providing highly pressurized, gasified NH₃



• Liquid NH₃ pressurized by canned motor pump and

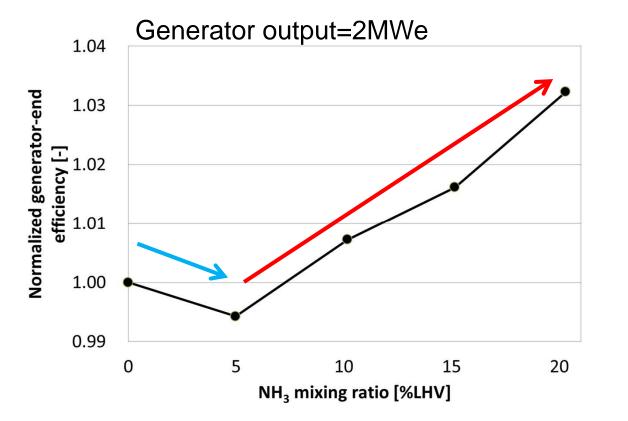
vaporized by hot water bath type evaporator

- Feed lines and accumulator heated to prevent re-liquefaction of gasified NH₃
- NH₃ for NOx reduction at SCR unit fed from separate low-pressure supply line


Effect of NH₃ mixing ratio on fuel mass flow rate

- NH₃ mass flow rate manually increased while maintaining 2MWe power generation
- Natural gas supply simultaneously decreased automatically to keep generator output constant
- Total fuel mass flow rate increased when NH₃ mixing ratio increased
- \rightarrow LHV of NH₃ only 40% that of natural gas (NH₃: 18.6MJ/kg, natural gas: 49.3MJ/kg)

Effect of NH₃ mixing ratio on NOx concentration

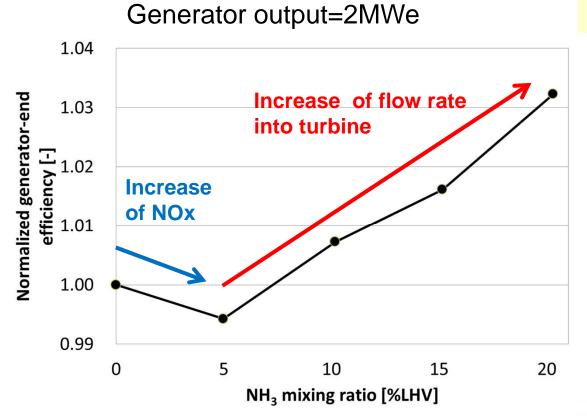

NOx@Turbine outlet

- $0 \rightarrow 5\%$ LHV : Rapidly increased
- 5→20%LHV : Saturated to 290ppm

NOx@SCR outlet

• NOx reduced below 6ppm by SCR

Effect of NH₃ mixing ratio on generator-end efficiency



Generator-end efficiency, η_{GE} $\eta_{GE} = 100 \times \frac{Generator \ output}{Total \ fuel \ energy \ input}$

Normalized by value of NH₃ mixing ratio=0%LHV

- NH₃ mixing ratio=0 \rightarrow 5%LHV : η_{GE} decreased
- NH₃ mixing ratio=5 \rightarrow 20%LHV : η_{GE} monotonically increased
- This interesting behavior is explained on the next page.

Effect of NOx formation

In the combustion of NH₃, the energy obtained from NOx formation is lower than that from complete combustion. $NH_3 + 0.75O_2 \rightarrow 0.5N_2 + 1.5H_2O + 318kJ/mol$ $NH_3 + 1.25O_2 \rightarrow NO + 1.5H_2O + 226kJ/mol$

Effect of NH₃ supply on gas flow rate into turbine

NH₃ mixing ratio

- ➡ Total volume flow rate of fuel
- ➡ Flow rate into turbine
- ➡ Generator output 1
- To maintain generator output, total fuel energy input

Demonstration tests were conducted with 2MWe gas-turbine to evaluate the effect of NH_3 /natural gas co-firing on the performance of an actual GT.

<u>Results</u>

- It is demonstrated that NH_3 can be used as fuel in a 2MWe GT.
- NOx concentration of NH_3 co-firing GT is higher than that of natural gas fired GT, but it is within a range that can be kept extremely low by SCR unit.
- If NOx concentration can be kept lower, NH₃ co-fired GT yields higher generator-end efficiency compared to natural gas-fired GT.

This work was supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), "Energy Carrier" (Funding agency : JST)

Thank you for your attention!

