

The Ammonia Economy Global Potential and Possible Pathways

NH3FUEL CONFERENCE DES MOINES, IA SEPTEMBER, 2014

Dr. Steve Wittrig Senior Advisor, Advanced Energy Systems Clean Air Task Force (www.catf.us) tswittrig@gmail.com

The Prize – 21st Century

(With Apologies to Daniel Yergin)

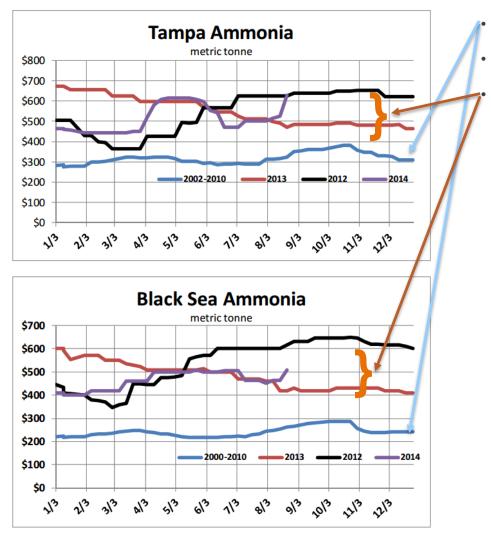
A zero carbon fuel

That can be used for transportation and power generation

That is scalable from global chemical to global energy proportions

That is an inherently clean fuel with regard to traditional pollutants and CO₂

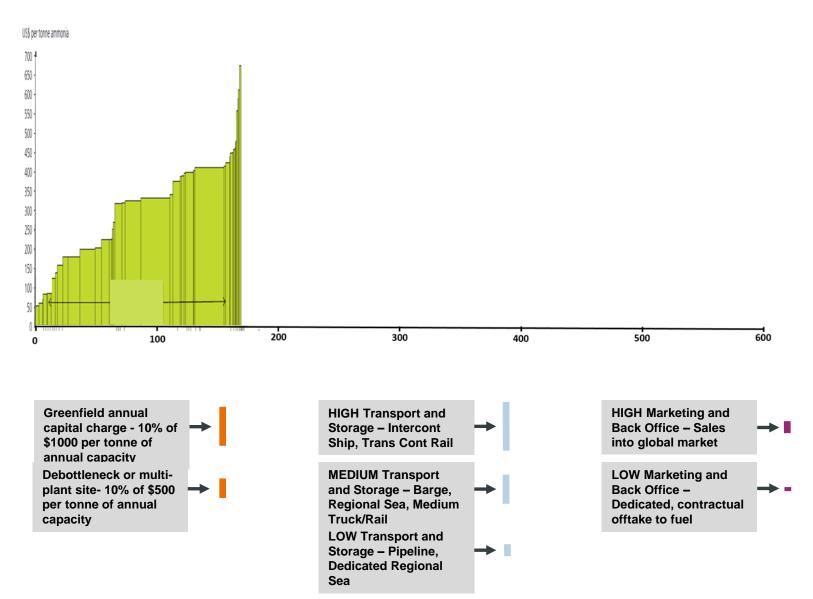
That has a century long history of large scale handling and use


That is competitive in energy pricing to current fuels

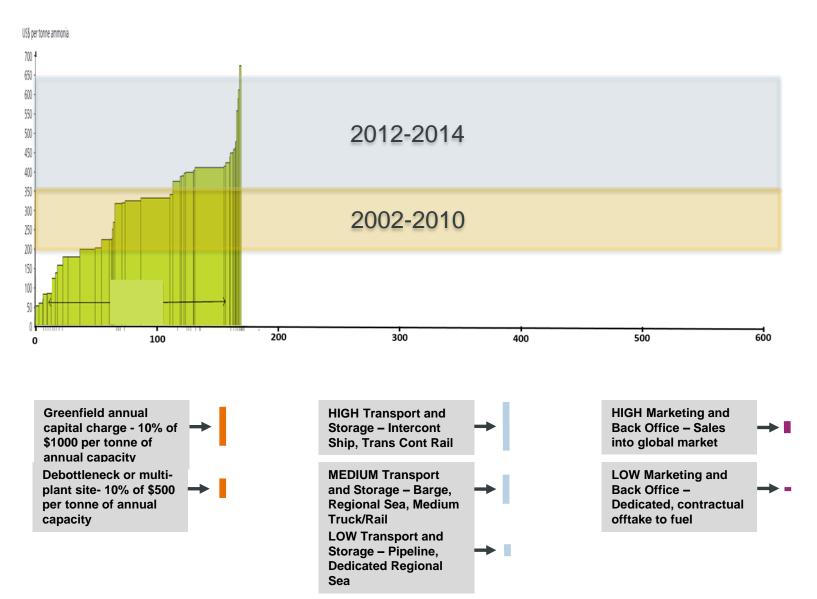
That holds promise for low or no carbon production (through CCS on standard technology or advanced technology for renewables or nuclear)

That *appears to be* within easy reach through optimization of production, use and safety regulations

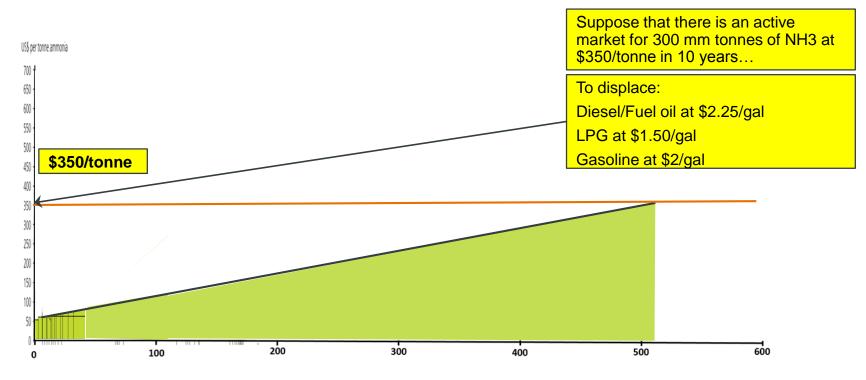
Price History - Ammonia Industry



- 2002 2010 \$200 \$350
- US Mainland about \$100 higher
 - 2012 2014 \$350 \$650



http://farmfutures.com/mdfm/Faress1/author/252/2014/8/WFertR081914.pdf


General Cost Structure of Ammonia Industry

Historical Price Ranges

What Happens with a Growing Fuels Market?

• Will there be ammonia to supply such a market?

MODEL RESULTS											
USER INPUTS ALLOWED IN GREEN CELLS	ALL VALUES EQUIV 1 MT NH3	c	ALL VALUES ORRESPOND TO CASE PARAMETERS								
REQUIRED INPUT or CALCULATE Tonnes NH3 for your scenario in D4	1.00		5.86E+06								
OPTIONAL USER- DEFINED VARIABLE. ENTER VARIABLE NAME IN THIS CELL ENTER (1 T NH3 BASIS) IN CS. ITERATE DA TO ACHIEVE DESIRED QUANTITY IN DS			0.00								
MMBTU (or 1000 CF gas equiv) contained in NH3	21.32		124,987,434								
MMBTU gas required for NH3	32.0		187,616,000								
TCF natural gas required for NH3	2.94E-08		0.172								
Tonnes water produced from NH3	1.58E+00		9,263,540								
# Global ammonia industry	6.67E-09		0.039								
# of World Scale NH3 Plants	1.255-06		7.33								
Number of 60,000 cbm vessels	2.445-05		143								
Number of 80 tonne railcar deliveries	0.0125		73,288								
# of 1 MM TPA NH3 pipeline	1.005-06		5.9	1							
MWh from 45% efficient power plants	2.81E+00		16,475,030	T C mi pr							
# of 10 MW plants that can be run for 1 year, 45%	3.215-05		188.0								
Equivalent # of 6 mtpa LNG train (BTU basis)	6.87E-08		0.40								
Tonnes LNG equivalent	0.41		2,403,830	ŀ							
Metric Tonnes coal equiv	1.04		6,097,520								
Tonnes oil equivalent (TOE)	0.500		2,931,500	6							
Tonnes resid equiv	0.530		3,107,390	P							
Gal LPG equiv	234		1,371,942,000	A							
Gal Gasoline equiv	172		1,008,436,000	F							
Gal Ethanol equiv	253		1,483,339,000	Ν							

Hawaii distillate,	, resid and coal	import	(125 T BTU)
--------------------	------------------	--------	-------------

COST, THERMO AND CO2 MATRIX AMMONIA NATURAL GAS GASOLINE LPG DIESEL COAL ETHANOL NPUT Price of NH3 **PUT** Price of gas PUT Price of PUT Price of LPG UT Price of diesel PUT Price of coal PUT Price of delivered to site, \$ delivered to site, \$ / gasoline delivered to lelivered to site, \$ / lelivered to site, \$ / delivered to site, \$ / ethanol delivered to per tonne nmbtu site, \$ / gal ite, \$ / gal \$350 \$5.00 \$30.00 \$4.00 \$4.00 \$4.00 \$50 Tonnes NH3 for 21.3 MMBTU gas for 21.3 Gal gasoline for 21.3 Gal diesel for 21.3 Tonnes coal for 21.3 Gal ethanol for 21.3 al LPG for 21.3 MMBTU MMBTU MMBTU ммвти ммвти ммвти ммвти 21 e Fuel Cost (f Fuel Cost (fo B Fuel Cost (for 21.3 as Fuel Cost (for 21.3 G Fuel Cost (for 21.3 el Fuel Cost (for 21.3 al Fuel Cost (for 21.3 .3 mmbtu) - This mmbtu) - This ul - This Scenario ul - This Scenari otu) - This Scenari tu) - This Scenario u) - This Scenari \$35 \$63 \$68 \$936 \$624 \$1,26 kwh from 21.3 mmbtu at kwh from 21.3 mmbtu at kwh from 21.3 mmbtu at wh from 21.3 mmbtu at kwh from 21.3 mmbtu at wh from 21.3 mmbtu at kwh from 21.3 mmbtu at 45% efficiency (gas/nh3 45% efficiency (gas/nh3 45% efficiency (gas/nh3 45% efficiency (gas/nh3 35% efficiency (coal like) 35% efficiency (coal like) 35% efficiency (coal like) 28 220 2800 280 22 220 el cost for power, Fuel cost for power, \$/kwh from NH3 el cost for power for el cost for power, el cost for power, el cost for power, el cost for power, kwh from coal wer, \$/kwh from ga kwh from gasoline wh from LPG wh from diesel kwh from coal \$0.125 \$0.228 \$0.313 \$0.334 \$0.284 \$0.024 \$0.452 MMONIA, NO AMMONIA w/ NATURAL GAS GASOLINE LPG DIESEL COAL ETHANOL ccs HARVEST CO2 per 21.3 CO2 per 21.3 CO2 per 21.3 mmbtu, CO2 per 21.3 mmbtu, CO2 per 21.3 mmbtu, T CO2 per 21.3 mmbtu, T CO2 per 21.3 mmbtu, T CO2 per 21.3 mmbtu, nbtu,only mbtu,only production OT COUNTING OT COUNTING IOT COUNTING OT COUNTING OT COUNTING OT COUNTING CO2 harvest ECYCLE duction, no CCS 0.33 1.93 0.68 1.23 1.65 1.48 1.68 2.42 CASE NOTES HAWAII distillate, resid and coal import (125 T BTU)

Gas price - \$40 per mmbtu

Power - \$350 per mwh (about 80% from coal, resid and fuel oil)

This could be displaced by 6 mmt nh3 (about 7.5 ammonia plants)

About 150 cargo ship deliveries per year.3

Fuel cost for ammonia per year - \$2.0 bb. Fuel cost for power ('free' heat from CHP) - \$125 per

иwн.

Scenario Model

- Inputs are tonnes NH3 and unit costs of fuels.
- **Outputs are parameters** • of the scenario and relative economics.
- Example parameters ٠
- # of ammonia plants •
- # of railcars and ship ٠ cargoes
- MWh of power
- Tonnes of oil, coal, Ing equivalent
- Tonnes of clean water • from NH3 combustion
- · Comparative costs for equivalent BTU's from various fuels

LNG 2012 Total Trade - 325 BCM												_
мос	DEL RESI	JLTS				COST, T	HERMO AND CO2	MATRIX				
USER INPUTS ALLOWED IN GREEN CELLS	ALL VALUES EQUIV 1 MT NH3	ALL VALUES CORRESPOND TO CASE PARAMETERS		AMMONIA	NATURAL GAS	GASOLINE	LPG	DIESEL	COAL	ETHANOL	METHANOL	DME
REQUIRED INPUT or CALCULATE Tonnes NH3 for your scenario in D4	1.00	600,000,000		INPUT Price of NH3 delivered to site, \$ per tonne	INPUT Price of gas delivered to site, \$ / mmbtu	INPUT Price of gasoline delivered to site, \$ / gal	INPUT Price of LPG delivered to site, \$ / gal	INPUT Price of diesel delivered to site, \$ / gal	INPUT Price of coal delivered to site, \$ / tonne	INPUT Price of ethanol delivered to site, \$ / gal	INPUT Price of methanol delivered to site, \$ / tonne	INPUT Price of DME delivered to site, \$ / tonne
OPTIONAL USER- DEFINED VARIABLE. ENTER VARIABLE NAME IN THIS CELL ENTER (1 T INI'S BASIS) IN CS. ITERATE D4 TO ACHEVE DESIRED QUANTITY IN D5		0.00		\$500	\$23.00	\$2.90	\$2.15	\$3.20	\$100	\$4.00	\$300	\$420
MMBTU (or 1000 CF gas equiv) contained in NH3 MMBTU gas required for	21.32	12,790,800,000		Tonnes NH3 for 21.3 MMBTU	MMBTU	Gal gasoline for 21.3 MMBTU	Gal LPG for 21.3 MMBTU	Gal diesel for 21.3 MMBTU	Tonnes coal for 21.3 MMBTU	Gal ethanol for 21.3 MMBTU	Tonnes methanol for 21.3 MMBTU	Tonnes DME for 21.3 MMBTU
NH3 TCF natural gas required	32.0	19,200,000,000		1.0 NH3 Fuel Cost (for 21.3	21.3 Gas Fuel Cost Hor 21.3	Gasoline Fuel Cost (for 21.3 mmbtu) - This	234 LPG Fuel Cost (for 21.3	Diesel Fuel Cost (for 21.3	Le Coal Fuel Cost (for 21.3	Ethanol Fuel Cost (for 21.3 mmbtu) - This	0.982 Methanol Fuel Cost	0.7 DME Fuel Cost (for
for NH3 Tonnes water produced	2.945-08	17.640		mmbtu) - This Scenario	Gas Fuel Cost (for 21.3 mmbtu) - This Scenario	Scenario	mmbtu) - This Scenario	mmbtu) - This Scenario	mmbtu) - This Scenario	Scenario	(for 21.3 mmbtu) - This Scenario	21.3 mmbtu) - This Scenario
from NH3 # Global ammonia		948,000,000		\$500 kwh from 21.3 mmbtu at		\$499 kwh from 21.3 mmbtu at	\$503 kwh from 21.3 mmbtu at	\$499 kwh from 21.3 mmbtu at	\$104 kwh from 21.3 mmbtu at	\$1,012 kwh from 21.3 mmbtu at	\$294 kwh from 21.3	\$29 kwh from 21.3
Industry # of World Scale NH3	6.67E-09	4.000		45% efficiency (gas/nh3 like)	ike)	35% efficiency (coal like)		kwh from 21.3 mmbtu at 35% efficiency (coal like)			mmbtu at 45% efficiency (gas/nh3	mmbtu at 45% efficiency (gas/nh3
Plants Number of 60,000 cbm	2,44E-05	750.00000		2800 Fuel cost for power,	2800 Fuel cost for power for	Fuel cost for power,	2800 Fuel cost for power,	Fuel cost for power,	Fuel cost for power,	Fuel cost for power,	2800 Fuel cost for power, \$/kwh from	280 Fuel cost for power,
vessels Number of 80 tonne	0.0125			\$/kwh from NH3 \$0.179	power, \$/kwh from gas \$0.175	S/kwh from gasoline	\$/kwh from LPG \$0.180	\$/kwh from diesel	S/kwh from coal	S/kwh from coal	\$/kwh from methanol \$0.105	\$/kwh from DME
railcar deliveries	0.0125	7,500,000	AMMONIA, NO	AMMONIA w/		\$0.227			\$0.047	\$0.361		\$0.10
pipeline MWh from 45% efficient	2.818+00		CCS T CO2 per 21.3	HARVEST T CO2 per 21.3		GASOLINE T CO2 per 21.3 mmbtu,	LPG T CO2 per 21.3 mmbtu,	DIESEL T CO2 per 21.3 mmbtu, NOT COUNTING			METHANOL T CO2 per 21.3	DME T CO2 per 21.3
power plants # of 10 MW plants that	3.216-05	1,686,000,000		mmbtu,only production, CO2 harvest	NOT COUNTING LIFECYCLE	NOT COUNTING UFECYCLE	NOT COUNTING LIFECYCLE	NOT COUNTING UFECYCLE	NOT COUNTING LIFECYCLE	NOT COUNTING UFECYCLE	COUNTING LIFECYCLE	COUNTING LIFECYCLE
can be run for 1 year, 45% Equivalent # of 6 mtpa		19,235.7	1.93	0.68	1.23			1.68	2.42	0.33	1.80	1.8
LNG train (BTU basis)	6.872-08	41.23	325 hcm (* 90 mmtee	/hcm) equi	v to about 3	NOTES					
Tonnes LNG equivalent	0.41	246,000,000	525 benn (.90 mmtoe	y being equi	v to about 5	00 11111 100					
Metric Tonnes coal equiv	1.04	624,000,000	This is equ	uivalent to 6	00 MM TPA	ammonia (4	4 X current a	ammonia inc	lustry)			
(TOE)	0.500	300,000,000										
Tonnes resid equiv	0.530	318,000,000										
1.00 in		140,400,000,000										
Gal Gasoline equiv	172	103,200,000,000										
Gal Ethanol equiv	253	151,800,000,000										
Price NH3	\$500											
Total NH3 cost \$	\$ 0.179	300,000,000,000										
S/kwh from NH3 Price NATURAL GAS	\$23.00											
	\$23.00											
Total Natural Gas cost \$	\$ 0.175	\$ 293,940,000,000										
Fuel cost for power for power, \$/kwh from gas	\$ 0.175											
Price GASOLINE	52.90	\$ 299,280,000,000										
Total Gasoline cost \$		299,280,000,000										
\$/kwh from gasoline	\$ 0.227											
Price LPG Total LPG cost \$	\$2.15											
Total LPG cost \$		\$ 301,860,000,000										
\$/kwh from LPG	\$ 0.180											
Price DIESEL	\$3.20	\$ 299,520,000,000										
Total Diesel cost \$		\$ 299,520,000,000										
\$/kwh from diesel	\$ 0.227											
Price COAL	\$100											
Total Coal cost \$		\$ 62,400,000,000										
\$/kwh from coal	\$ 0.047											
Price ETHANOL											1	
	200											
Total Ethanol cost \$		\$ 607,200,000,000										
	\$ 0.361 \$ 5.50E-07	\$ 607,200,000,000										

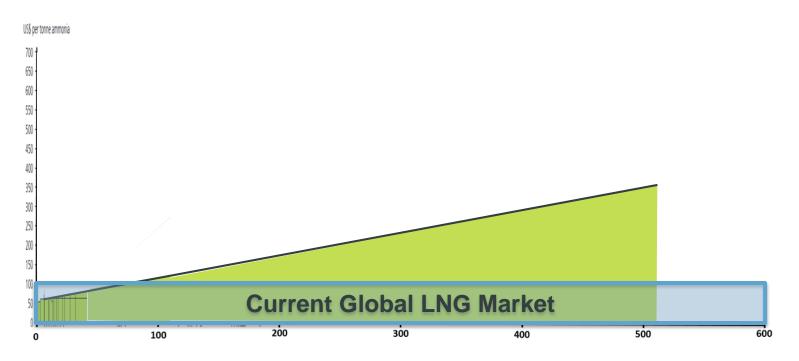
Global LNG

LNG Global trade 2012 was equivalent to 600 MM TPA Ammonia

This is equivalent to 4 X current global ammonia business.

This is a proxy of low cost, large scale natural gas available with capability for industrial construction around the world for commercial use.

LNG market does not include:


Medium sized resources (< a few TCF)

Difficult access to deep port (e.g., Alaska)

Political barriers (e.g., US shale gas)

What Happens with a Growing Fuels Market?

• There is low cost, commercializable natural gas available for low cost ammonia (especially considering the growing amounts of gas not available for LNG).

			10% of ALA	SKA LNG pr	oject (10% o	of 60 BB\$ - 1	19 mtpa (90	0 bcf/yr))							
MODE	RESUL	TS				COST, T	HERMO AND CO2	MATRIX							
USER INPUTS ALLOWED IN GREEN CELLS	ALL VALUES EQUIV 1 MT NH3	ALL VALUES CORRESPOND TO CASE PARAMETERS		AMMONIA	NATURAL GAS	GASOLINE	LPG	DIESEL	COAL	ETHANOL					
REQUIRED INPUT or CALCULATE Tonnes NH3 for your scenario in D4	1.00	4,609,757		INPUT Price of NH3 delivered to site, \$ per tonne	INPUT Price of gas delivered to site, \$ / mmbtu	INPUT Price of gasoline delivered to site, \$ / gal	INPUT Price of LPG delivered to site, \$ / gal	INPUT Price of diesel delivered to site, \$ / gal	INPUT Price of coal delivered to site, \$ / tonne	INPUT Price of ethanol delivered to site, \$ / gal					
OPTIONAL USER- DEFINED VARIABLE. INTER VARIABLE NAME N THIS CELL. ENTER (1 T NH3 BASIS) IN CS. TERATE DA TO ACHIEVE DESIRED QUANTITY IN DS		0.00		\$350	\$25.00	\$4.50	\$3.50	\$4.00	\$125	\$4.50					
MMBTU contained in NH3	21.32	98,270,799		Tonnes NH3 for 21.3 MMBTU	MMBTU gas for 21.3 MMBTU	Gal gasoline for 21.3 MMBTU	Gal LPG for 21.3 MMBTU	Gal diesel for 21.3 MMBTU	Tonnes coal for 21.3 MMBTU	Gal ethanol for 21.3 MMBTU					
IMBTU gas required for H3	32.0	147,512,223		1.0	21.3	171	234	156	1.0	253					
CF natural gas required or NH3	2.94E-08	0.14		NH3 Fuel Cost (for 21.3 mmbtu) - This Scenario	Gas Fuel Cost (for 21.3 mmbtu) - This Scenario	Gasoline Fuel Cost (for 21.3 mmbtu) - This Scenario	LPG Fuel Cost (for 21.3 mmbtu) - This Scenario	Diesel Fuel Cost (for 21.3 mmbtu) - This Scenario	Coal Fuel Cost (for 21.3 mmbtu) - This Scenario	Ethanol Fuel Cost (for 21.3 mmbtu) - This Scenario					
onnes water produced rom NH3	1.585+00	7,283,416		\$350 \$533 \$774 \$819 \$624 \$130 \$1,189 bit for 71 J method bit for 71 J method											
l Global ammonia ndustry	6.672-09	0.03		kwh from 21.3 mmbtu at 45% efficiency (gar/må) 45% efficiency (gar/må) 18ke)											
of World Scale NH3 Plants	1.258-06	5.76		2800	2800	2200	2800	2200	2200	2800					
lumber of 60,000 cbm ressels	2.44E-05	112		Fuel cost for power, \$/kw from NH3	Fuel cost for power for power, \$/kw from gas	Fuel cost for power, S/kw from gasoline	Fuel cost for power, \$/kw from LPG	Fuel cost for power, \$/kw from diesel	Fuel cost for power, \$/kw from coal	Fuel cost for power, \$/kw from coal					
lumber of 80 tonne ailcar deliveries	0.0125	57,621.96		\$0.125	\$0.190	\$0.352	\$0.293	\$0.284	\$0.059	\$0.407					
of 1 MM TPA NH3 ipeline	1.005-06	4.61	AMMONIA, NO CCS	AMMONIA w/ HARVEST	NATURAL GAS	GASOLINE	LPG	DIESEL	COAL	ETHANOL					
1Wh from 45% efficient ower plants	2.81E+00	12,953,417	T CO2 per 21.3 mmbtu,only production, no CCS	T CO2 per 21.3 mmbtu,only production, CO2 harvest	T CO2 per 21.3 mmbtu, NOT COUNTING UFECYCLE	T CO2 per 21.3 mmbtu, NOT COUNTING LIFECYCLE	T CO2 per 21.3 mmbtu, NOT COUNTING LIFECYCLE	T CO2 per 21.3 mmbtu, NOT COUNTING LIFECYCLE	T CO2 per 21.3 mmbtu, NOT COUNTING LIFECYCLE	T CO2 per 21.3 mmbtu, NOT COUNTING LIFECYCLE					
of 10 MW plants that an be run for 1 year, 45%	3.218-05	147.79	1.93		1.23	1.65	1.48	1.68	2.42	0.33					
quivalent # of 6 mtpa NG train (BTU basis)	6.872-08	0.32				CASE	NOTES								
onnes LNG equivalent	0.41	1,890,000					rs of re-injection f ket. The leading c								
letric Tonnes coal equiv	1.04	4,794,147	pipeline to And	horage and a LNG	export terminal.	In addition to tax	es, revenues and e ing to the point th	employment, the o	development and	monetization of					
onnes oll equivalent OE)	0.500	2,304,878	increasingly diff		, Fairbanks and ma	any internal town:	s have very high a								
onnes resid equiv	0.530	2,443,171					tain what the LNG	market will be 8-	10 years from nov	v (after \$60 BB is					
al LPG equiv	234	1,078,683,132	on the ground)	. This is not a com	nmercial risk. It is	a 'bet the state' r	isk.								
al Gasoline equiv	172	792,878,200					ably strong suppor and eventually Asi								
al Ethanol equiv	253	1,166,268,515	• It doesn't rea	quire mega-invest	ment to prove the	e markets or even	to build the first p	plant.							
rice NH3	\$350						nue, rather than \$ tet is bigger than o								
otal NH3 cost \$		\$ 1,613,414,941	• The market				commodity that is								
uel cost for power, /kwh from NH3	\$ 0.125						nal AK demand in quired (for power,								
rice NATURAL GAS	\$25.00			red easily for wint						1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -					
otal Natural Gas cost \$		\$ 2,454,695,590	clean power	gen are very valu	able in this enviro	nment.	lated from finishe		istrict heating and	d small scale,					
uel cost for power for ower, \$/kwh from gas	\$ 0.190		 It is not as vi 	ulnerable to earth	quakes, sabotage	or high pressure p	pipeline failure as	a gas pipeline.							
rice GASOLINE	\$4.50		THIS MODEL RE	EFLECTS AMMON	IA PRODUCTION I	EQUIVALENT TO 1	0% OF THE PLANN	NED CAPACITY OF	THE LNG/PIPELIN	IE PROJECT.					
otal Gasoline cost \$		\$ 3,567,951,899	This reflects a r	ight-sized scenari	o as an alternative	e to the gas pipelir	ne.								
uel cost for power, /kwh from gasoline	\$ 0.352						lerably more expe But this is actuall								
rice LPG	\$3.50		(and it stays in		ammonia (and me	ethanol/MTG) ind	ustry develops on								
otal LPG cost \$		\$ 3,775,390,963					on, operation and	logistics to trend	down toward toda	ay's costs (even					
uel cost for power, /kwh from LPG	\$ 0.293		as those costs f	fall further). In Ala	aska, higher capex	and operating co	sts will be offset b nsive environment	y very low finding							
rice DIESEL	\$4.00					, and any other									
111															

Alaska LNG Project

Alaska has massive store of low cost gas from decades of gas re-injection.

There is a \$60-\$70 BB, 6 year project proposed for building a gas pipeline to Anchorage and LNG export to Asia.

10% of the proposed gas would feed 5-6 North Slope ammonia plants.

This can be done in parallel with gas pipeline project, but is much more flexible and quicker payback.

MOD	EL RESL	ILTS		% of global ı			HERMO AND CO2					
USER INPUTS	ALL	ALL VALUES		AMMONIA				DIESEL				
CELLS	EQUIV 1 MT NH3	CORRESPOND TO CASE PARAMETERS		AMMONIA	NATURAL GAS	GASOLINE	LPG	DIESEL	COAL	ETHANOL	METHANOL	DME
REQUIRED INPUT or	1.00	65,600,000		INPUT Price of NH3 delivered to site. S	INPUT Price of gas delivered to site, \$ /	INPUT Price of	INPUT Price of LPG delivered to site, \$ /	INPUT Price of diesel delivered to site, \$ /	INPUT Price of coal delivered to site, \$ /	INPUT Price of ethanol delivered to	INPUT Price of methanol	INPUT Price of D delivered to site
for your scenario in D4	1.00	-		delivered to site, \$ per tonne	mmbtu	site, \$ / gal	gal	gal	tonne	site, \$ / gal	delivered to site, \$ / tonne	/ tonne
OPTIONAL USER-												
ENTER VARIABLE NAME IN THIS CELL, ENTER (1 T		0.00		\$350	\$15.00	\$3.00	\$2.00	\$3.80	\$50	\$3.00	\$200	\$290
NH3 BASIS) IN CS. ITERATE D4 TO ACHIEVE DESIRED QUANTITY IN D5												
MMBTU (or 1000 CF gas	21.32	1,398,460,800			MMBTU gas for 21.3 MMBTU	Gal gasoline for 21.3 MMBTU	Gal LPG for 21.3 MMBTU	Gal diesel for 21.3	Tonnes coal for 21.3 MMETU	Gal ethanol for 21.3	Tonnes methanol for 21.3 MMBTU	Tonnes DME for 3 MMBTU
equiv) contained in NH3 MMBTU gas required for	32.0	2,099,200,000		14	21.1		234	154	IMMETO	253	21.3 MMBT0 0.982	MMBTU
NH3 TCF natural gas required				NH3 Fuel Cost (for 21.3	Gas Feel Cost (for 21.3	Gasoline Fuel Cost (for	LPG Fuel Cost (for 21.3	Diesel Fuel Cost (for 21.3	Coal Fuel Cost (for 21.3	Ethanol Fuel Cost (for	Methanol Fuel Cost	OME Fuel Cost (fo
for NH3	2.942-08	1.929		mmbtu) - This Scenario	mmbtu) - This Scenario	21.3 mmbtu) - This Scenario	mmbtu) - This Scenario	mmbtu) - This Scenario	mmbtu) - This Scenario	21.3 eventsu) - This Scenario	(for 21.3 mmbtu) - This Scenario	21.3 mmbtu) - Th Scenario
Tonnes water produced from NH3	1.588+00	103,648,000		\$350 kwh from 21.3 mmbtu at	\$320 kwh from 21.3 mmbtu at	\$516	\$468 kwh from 21.3 mmbtu at	\$593	\$53	\$759 kwh from 21.3 mmbtu at	\$196 kwh from 21.3	swh from 21.3
# Global ammonia industry	6.672-09	0.437			45% efficiency (gas/nh3 like)	kwh from 21.3 mmbtu at 35% efficiency (coal like)	45% efficiency (gas/nh3 like)	kwh from 21.3 mmbtu at 35% efficiency (coal like)	kwh from 21.3 mmbtu at 35% efficiency (coal like)	45% efficiency (gas/nh3 like)	mmbtu at 45% efficiency (gas/nh3	mmbtu at 45% efficiency (gas/nit
I of World Scale NH3 Plants	1.256-06	82.00		2800	2900	2200	2800	2200	220	2800	2800	
Number of 60,000 cbm vessels	2.446-05	1,598		Fuel cost for power, \$/kwh from NH3	Fuel cost for power for power, 5/kwh from gas	Fuel cost for power, S/kwh from gasoline	Fuel cost for power, S/kwh from LPG	Fuel cost for power, S/kwh from diesel	Fuel cost for power, S/kwh from coal	Fuel cost for power, S/kwh from coal	Fuel cost for power, \$/kwh from	Fuel cost for pow \$/kwh from DME
Number of 80 tonne railcar deliveries	0.0125	820,000		\$0.125	\$0.114	\$0.235	\$0.167	\$0.269	\$0.024	\$0.271	so.070	\$0.
of 1 MM TPA NH3	1.005-06	65.6	AMMONIA, NO	AMMONIA w/	NATURAL GAS	GASOLINE	LPG	DIESEL	COAL	ETHANOL	METHANOL	DME
pipeline MWh from 45% efficient	2.818-00	184,336,000	CCS T CO2 per 21.3 mmbhu colo	HARVEST T CO2 per 21.3	T CO2 per 21.3 mmbtu,	T CO2 per 21.3 mmbtu,	T CO2 per 21.3 mmbtu,	T CO2 per 21.3 mmbtu,	T CO2 per 21.3 mmbtu,	T CO2 per 21.3 mmbtu,	T CO2 per 21.3	T CO2 per 21.3
power plants			production, no CCS	CO2 harvest	UFECYCLE	UFECYCLE	UFECYCLE	UFECYCLE	URECYCLE	UFECYCLE	COUNTING LIFECYCLE	COUNTING LIFECY
can be run for 1 year, 45%	3.211-05	2,103.1	1.93	0.68	1.23	1.65	1.48	1.68	2.43	0.33	1.80	1
Equivalent # of 6 mtpa LNG train (BTU basis)	6.872-08	4.51	olahal and	200	h la substant à la		NOTES	and at 10%)				
Tonnes LNG equivalent	0.43	26,896,000		r power – 2500 tw		8.5 Quad at 100%,	about 21 Quad I	heat at 40%}				
Metric Tonnes coal equiv	1.04	68,224,000	Levelling Base	Load for existing r	nuclear.							
Tonnes oil equivalent (TOE)	0.500	32,800,000	Assume typica	I 1 GW nuclear pla be high). Assume	int producing pow	ver at incremental	operating cost of	\$0.02 per kwh (?	Is this a reasonabi	le number, it		
Tonnes resid equiv	0.530	34,768,000		this case is that the					the leferstructure	en for local		
1.00° in	234	15,350,400,000	production of a	ammonia power is	in place.) During	peak hours, the a	mmonia power p	roduction (sized to	25% of baseload	(250 MW))		
	172	11,283,200,000	up to 125% of	ent the 750 MW f the original 1 GW.	rom the plant. De	uring peak summe	r months, the am	monia production	could be scaled b	ack to provide		
			As infrastructu	ire builds, this cou	ld theoretically gr	ow to 100% amm	onia production fr	rom the nuclear pl	ant.			
Gal Ethanol equiv	253	16,596,800,000	The case is 255	% of current nucle	ar converted via E	lectrogen/FAM, T	his is 625 twh. If i	we assume that 65	5% (?. efficiency o	fpower		
Price NH3	\$350		converted to a	immonia BTUs) (41	10 twh of this ene	rgy is converted to	o ammonia (21.7 r	mmbtu per tonne)		111		
Total NH3 cost \$		22,960,000,000	This is 65 MM	tonnes ammonia.								
Fuel cost for power, \$/kwh from NH3	\$ 0.125			ent of 5000 gpd Ele								
Price NATURAL GAS	\$15.00		about \$3BB ca	t that large scale m pex. At \$0.02 per l	kwh and sales prid	ce of \$350/tonne,	the capital will be	paid off within 2-	3 years. It should	be noted that \$3		
Total Natural Gas cost 5		\$ 20,959,200,000	BB is a very sm peak capacity	hall investment for by 25%. And at th	upgrading the wo	orids' nuclear flee nonia price, it is a	t to 25% flexibility very profitable in	on diurnal peak s vestment.	having and increa	sing effective		
Fuel cost for power for power, S/kwh from gas	\$ 0.114			associated with th					able energy. We	will use a		
power, 5/kwh from gas	\$3.00		'theoretical' M	1HI ammonia Meg CHP/absorptive A	aNinja as a protot	ype (nominally siz	ed as 1.5 MW - 1	0 MW, power effic	iency at 45%, add	litional heat		
		5 33,849,600,000		nes (about \$17 BB		in assume capex a	r 9900/kw (98 MN	a for 10 Miw mach	intej. Inis scenari	lo requires 2100		
Total Gasoline cost \$		3 33,849,600,000		fficiency, these un								
Fuel cost for power, \$/kwh from gasoline	\$ 0.235			nonia, the total co , the fuel cost for p			this scenario is \$2	2.8 BB. If we valu	e the heat at \$3/r	nmbtu		
Price LPG	\$2.00			available on stand			y installed at the I	highest value sites	(office buildings	highrise		
Total LPG cost \$		\$ 30,700,800,000	dwellings, reta	il, food (refrigerat , medium pressur	tion), light manufa	cturing, banks, ho						
Fuel cost for power, \$/kwh from LPG	\$ 0.167											
Price DIESEL	\$3.80		5000 tpd) and	in attributes of thi can initially serve	ammonia fertilize	r markets as well	as dedicated offta	ke to energy. The	energy market ci	an also be started		
Total Diesel cost \$		\$ 38,887,680,000	at small scale ((e.g., 1.5 MW for h available ammonia	high value CHP or . The real beauty	dedicated uninter is that this marke	ruptible power) an et can grow region	nd it can be supple ally around existin	emented or backe ng nuclear plants.	d up with It can (and will)		
	\$ 0.269		grow organica	lly according to pu ir own cost/risk/b	rely economic dri	ivers allowing entr	epreneurs and po	wer customers (a	nd grid managem	ent/regulators)		
Fuel cost for power,			to acverop the									
Fuel cost for power, \$/kwh from diesel												
Price COAL	550											
Price COAL Total Coal cost \$	550	\$ 3,411,200,000										
Price COAL	550 \$ 0.024	\$ 3,411,200,000										
Price COAL Total Coal cost \$		\$ 3,411,200,000										
Price COAL Total Coal cost 5 Fuel cost for power, S/kwh from coal	S 0.024	\$ 3,411,200,000 \$ 49,790,400,000										
Price COAL Total Coal cost \$ Fuel cost for power, \$/kwh from coal Price ETHANOL	S 0.024											

Global Nuclear

Nuclear power plants do not follow load (they operate full tilt 24/7). In general, the power overnight is not highly valued and seeks big markets at low prices.

If 25% of global nuclear were to be converted to ammonia at 65% efficiency, this would be equivalent to 65 MM TPA ammonia (about 45% of current global production.)

This requires commercialization of low capital electrolytic production technology.

There are several additional advantages:

Production of fuel for regional grid stabilization (e.g., renewables)

Locally controlled DG/CHP with NH3

Arbitrage of NH3/power by the nuclear plant.

Overview of Sources (for future development)

- Alaska North Slope
- US Southwest/Fracking in general
- Middle East / North Africa (lowest cost ammonia currently, lots of headroom)
- Canada Hydroelectric (10's of GW of low cost power on contract)
- Iceland (practically unlimited geothermal at 3.7 cents/kwh)
- Big Wind (depends on low capex electrolysis tech, allows local grid stabilization)
- Off Peak Nuclear (depends on low capex electrolysis tech, allows local grid stabilization)

Where Are the Markets?

	DEL RESI			0% 2012 Ne	and a start of a							
MO	DEL RESI					COST, T	HERMO AND CO2	MATRIX				
USER INPUTS ALLOWED IN GREEN CELLS	ALL VALUES EQUIV 1 MT NH3	ALL VALUES CORRESPOND TO CASE PARAMETERS		AMMONIA	NATURAL GAS	GASOLINE	LPG	DIESEL	COAL	ETHANOL	METHANOL	DME
REQUIRED INPUT or CALCULATE Tonnes NH3 for your scenario in D4	1.00	11,727,179		INPUT Price of NH3 delivered to site, \$ per tonne	INPUT Price of gas delivered to site, \$ / mmbtu	INPUT Price of gasoline delivered to site, \$ / gal	INPUT Price of LPG delivered to site, \$ / gal	INPUT Price of diesel delivered to site, \$ / gal	INPUT Price of coal delivered to site, \$ / tonne	INPUT Price of ethanol delivered to site, \$ / gal	INPUT Price of methanol delivered to site, \$ / tonne	INPUT Price of DM delivered to site, \$ / tonne
OPTIONAL USER DEFINED VARIABLE ENTER VARIABLE NAME IN THIS CELL ENTER (1 T NH3 BASIS) IN CS. TERATE DA TO ACHEVE DESIRED QUANTITY IN OS		0.00		\$350	\$12.00	\$4.00	\$3.50	\$4.00	\$100	\$4.00	\$300	\$420
MMBTU (or 1000 CF gas equiv) contained in NH3	21.52	250,000,000		Tonnes NH3 for 21.3 MMBTU	MMBTU gas for 21.3 MMBTU	Gal gasoline for 21.3 MMBTU	Gal LPG for 21.3 MMBTU	Gal diesel for 21.3 MMBTU	Tonnes coal for 21.3 MMBTU	Gal ethanol for 21.3 MMBTU	Tonnes methanol for 21.3 MMBTU	Tonnes DME for 21.3 MMBTU
MMBTU gas required for NH3	32.0	375,269,725		14		172	234	154	11	253	0.982	2 0.
TCF natural gas required for NH3	2.942-08	0.345		NH3 Fuel Cost (for 21.3 mmbtu) - This Scenario	Gas Fuel Cost (for 21.3 mmbtu) - This Scenario	21.3 mmbtu) - This Scenario	LPG Fuel Cost (for 21.3 mmbtu) - This Scenario	Diesel Fuel Cost (for 21.3 mmbtu) - This Scenario	Coal Fuel Cost (for 21.3 mmbtu) - This Scenario	21.3 mmbtu) - This Scenario	(for 21.3 mmbtu) - This Scenario	21.3 mmbtu) - This Scenario
Tonnes water produced from NH3 # Global ammonia	1.58E+00	18,528,943		\$350 kwh from 21.3 mmbtu at	\$256 kwh from 21.3 mmbtu at	\$688 kwh from 21.3 mmbtu at	\$819 kwh from 21.3 mmbtu at	\$624 kwh from 21.3 mmbtu at	\$104 kwh from 21.3 mmbtu at	\$1,012 kwh from 21.3 mmbtu at	\$294 kwh from 21.3	\$29 kwh from 21.3
a of World Scale NH3	6.67E-09	0.078		45% efficiency (gas/nh3 like)	45% efficiency (gas/nh3 like)	35% efficiency (coal like)	45% efficiency (gas/nh3 like)	35% efficiency (coal like)	35% efficiency (coal like)	45% efficiency (gas/nh3 like)	mmbtu at 45% efficiency (gas/nh3	mmbtu at 45% efficiency (gas/nh3
Plants Number of 60,000 cbm	1.255-05	14.66		2800 Fuel cost for power, S/kwh from NH3	2800 Fuel cost for power for	Z200 Fuel cost for power,	200 Fuel cost for power, \$/kwh from UPG	2200 Fuel cost for power, S/buth from diesel	Fuel cost for power, S/kwb from coal	Fuel cost for power,	Fuel cost for power,	Fuel cost for power,
vessels Number of 80 tonne	0.0125	286		S/kwh from NH3	Fuel cost for power for power, \$/kwh from gas \$0.091	S/kwh from gasoline	S/kwh from UPG	S/kwh from diesel	\$/kwh from coal	S/kwh from coal	S/kwh from methanol \$0.105	S/kwh from DME
railcar deliveries	1.005-06	146,590	AMMONIA, NO	AMMONIA w/	NATURAL GAS	GASOLINE	50.293 LPG	DIESEL	COAL	50.361 ETHANOL	S0.105	DME
pipeline MWh from 45% efficient	2.815+00	32,953,373	CCS T CO2 per 21.3 mmbtu,only	HARVEST T CO2 per 21.3 mmbtu,only production,	T CO2 per 21.3 mmbtu, NOT COUNTING	T CO2 per 21.3 mmbtu, NOT COUNTING	T CO2 per 21.3 mmbtu, NOT COUNTING	T CO2 per 21.3 mmbtu, NOT COUNTING	T CO2 per 21.3 mmbtu, NOT COUNTING	T CO2 per 21.3 mmbtu, NOT COUNTING	T CO2 per 21.3 mmbtu, NOT	T CO2 per 21.3 mmbtu, NOT
a of 10 MW plants that can be run for 1 year, 45%	3.215-05	376.0	production, no CCS	CO2 harvest 0.68	LIFECYCLE 1.23	1.65	LIFECYCLE 1.48	URCYCLE 1.68	2.42	0.33	COUNTING LIFECYCLE	COUNTING UPECYCL
Equivalent # of 6 mtpa LNG train (BTU basis)	6.872-08	0.81		1000		CASE	NOTES					
Tonnes LNG equivalent	0.41	4,808,143	Second Street Street	as and fuel infrast						21.21.21.01		
Metric Tormes coal equiv	1.04	12,196,266		ough pipeline and ually cycle \$10 per				dequate to arbitra	age costs through	the year.		
Tonnes oil equivalent (TOE)	0.500	5,863,589		ve sustainably rise								
Tonnes resid equiv	0.530	6,215,405	DG/CHP measu						ity, environmenta	I, cost saving and		
Gal LPG equiv	234	2,744,159,865		ent to 14 ammonia alent to about 28					s could be supplie	ed by very low		
Gal Gasoline equiv	172	2,017,074,772		Canadian hydropo						:5.)		
alethanol equiv	253	2,966,976,264	Ammonia is:									
Fuel cost for power,	\$350			times of the year								
\$/kwh from NH3	\$ 0.125		utilization o									
Price NATURAL GAS	\$12.00	\$ 2,997,466,929	ammonia a	el and generating re much cheaper a	and distributable	than gas storage.	These strategic r	ocal depots for lar eserves cover risk	ge (strategic rese is and arbitrage fo	rve) storage of or summer		
Fuel cost for power for power, \$/kwh from gas	\$ 0.091	\$ 2,397,400,523	This scenario i	winter heating. T s incremental in e	xecution. Starts v	vith small, high va	lue implementati					
power, S/kwh from gas Price GASOUNE	\$4.00			required. With ea arbitrage opportu					ing to competitive	ness and risk		
Total Gasoline cost \$		\$ 8,068,299,090		ons that are alread nulti billion S proje						multiyear		
Fuel cost for power, \$/kwh from gasoline	\$ 0.313											
Price LPG	\$3.50		Resear Sea Print									
Total LPG cost \$		\$ 9,604,559,527	Verm	ort Gas		New York Gas						
Fuel cost for power, \$/kwh from LPG	\$ 0.293		-	MNNNNN	- JW	WANNIN WANN	MM					
Price DIESEL	\$4.00		mm	yuluwell								
Total Diesel cost \$		\$ 7,317,759,640	a		4							
Fuel cost for power, \$/kwh from diesel	\$ 0.284		Resignment (Configuration	na jindar dang	-	gen Transformer Mality	-					
Price COAL	\$100	\$ 1,219,626,607	Nite	Ng OF D		NE LPG	mi					
Total Coal cost \$	\$ 0.047	3 1,219,626,607		to whether	- I	1 March	1-2					
\$/kwh from coal Price ETHANOL	\$4.00			Jast .		LAV .						
Total Ethanol cost \$		\$ 11,867,905,057	110724079		Tanataa		and a state of the					
Fuel cost for power, S/kwh from ethanol	\$ 0.361											
MegaTonnes CO2 saved with NH3 with harvest vs	5.506-07	6										
QAD .												

New England Gas Demand

New England and Mid Atlantic running short of gas and fuel oil for power and heating. Polar vortex put great pressure on power production last winter. Problem is getting worse with shutdown of coal plants.

It is very difficult and expensive to bring more gas into the region. 10% of current gas to the region is equivalent about 12 MM TPA ammonia (about 14 NH3 plants).

Fuel oil prices are routinely about \$4/gal now (about 80% more expensive than ammonia at \$350/tonne).

Ammonia can be used for distributed generation and combined heat/power around the region (energy security, urban deployment, grid stability)

MOD	DEL RESI	ULTS				COST. T	HERMO AND CO2	MATRIX					
USER INPUTS ALLOWED IN GREEN CELLS	ALL VALUES EQUIV 1 MT NH3	ALL VALUES CORRESPOND TO CASE PARAMETERS		AMMONIA	NATURAL GAS	GASOLINE	LPG	DIESEL	COAL	ETHANOL	METHANOL	DME	
REQUIRED INPUT or CALCULATE Tonnes NH3 for your scenario in D4	1.00	5.86E+06		INPUT Price of NH3 delivered to site, \$ per tonne	INPUT Price of gas delivered to site, \$ / mmbtu	INPUT Price of gasoline delivered to site, \$ / gal	INPUT Price of LPG delivered to site, \$ / gal	INPUT Price of diesel delivered to site, \$ / gal	INPUT Price of coal delivered to site, \$ / tonne	INPUT Price of ethanol delivered to site, \$ / gal	INPUT Price of methanol delivered to site, \$ / tonne	INPUT Price of DM delivered to site, \$ / tonne	
OPTIONAL USER- DEFINED VARIABLE. ENTER VARIABLE NAME IN THIS CELL ENTER (1 T NH3 BASIS) IN CS. ITERATE D4 TO ACHIEVE DESIRED QUANTITY IN D5		0.00		\$350	\$30.00	\$4.00	\$4.00	\$4.00	\$50	\$5.00	\$200	\$290	
MMBTU (or 1000 CF gas	21.32	124,987,434		Tonnes NH3 for 21.3 MMBTU	MMBTU gas for 21.3 MMBTU	Gal gasoline for 21.3 MMBTU	Gal LPG for 21.3 MMBTU	Gal diesel for 21.3	Tonnes coal for 21.3 MMBTU	Gal ethanol for 21.3 MMBTU	Tonnes methanol for 21.3 MMBTU	Tonnes DME for 21.3	
MMBTU gas required for	32.0	187,616,000		10	21.3	172	234	15	1.0	25		2 0.	
TCF natural gas required	2.945-08	0.172		NH3 Fuel Cost (for 21.3	Gas Fuel Cost (for 21.3	Gasoline Fuel Cost (for 21.3 mmbtu) - This	LPG Fuel Cost (for 21.3	Diesel Fuel Cost (for 21.3	Coal Fuel Cost (for 21.3	Ethanol Fuel Cost (for 21.3 mmbtu) - This	Methanol Fuel Cost (for 21.3 mmbtu) -	DME Fuel Cost (for 21.3 mmbtu) - This	
Tonnes water produced	1.588+00	9,263,540		saso	ś639	Scenario \$688	ś936	s624	mmotu) - Inis scenario \$52	Scenario \$1.265	This Scenario \$196	Scenario \$20	
from NH3 # Global ammonia	6.672-09	0.039		kwh from 21.3 mmbtu at 45% efficiency (gas/nh3	kwh from 21.3 mmbtu at 45% efficiency (gas/nh3	kwh from 21.3 mmbtu at	kwh from 21.3 mmbtu at 45% efficiency (gas/nh3	kwh from 21.3 mmbtu at	kwh from 21.3 mmbtu at	kwh from 21.3 mmbtu at 45% efficiency (gas/nh3	t kwh from 21.3 mmhtu at 45%	kwh from 21.3 mmbtu at 45%	
industry If of World Scale NH3	1256.05	7.33		like)	like)	35% efficiency (coal like)	like)	35% efficiency (coal like)	35% efficiency (coal like)	like)	efficiency (gas/nh3	efficiency (gas/nh3	
Plants Number of 60.000 cbm				Fuel cost for power.	Fuel cost for power for	Fuel cost for power.	Fuel cost for power.	Fuel cost for power.	Fuel cost for power.	Fuel cost for power,	Fuel cost for power,	Fuel cost for power.	
vessels	2.44E-05	143		\$/kwh from NH3	power, S/kwh from gas	\$/kwh from gasoline	\$/kwh from LPG	S/kwh from diesel	\$/kwh from coal	\$/kwh from coal	S/kwh from methanol	\$/kwh from DME	
Number of 80 tonne railcar deliveries	0.0125	73,288	AMMONIA, NO	\$0.125 AMMONIA w/	\$0.228	\$0.313	\$0.334	\$0.284	\$0.024	\$0.452	\$0.070	\$0.07	
pipeline	1.005-06	5.9	AMMONIA, NO CCS T CO2 per 21.3	AMMONIA w/ HARVEST T CO2 per 21.3	NATURAL GAS T CO2 per 21.3 mmbtu,	GASOLINE T CO2 per 21.3 mmbtu,	LPG T CO2 per 21.3 mmbtu,	DIESEL T CO2 per 21.3 mmbtu,	COAL T CO2 per 21.3 mmbtu,	ETHANOL T CO2 per 21.3 mmbtu,	METHANOL T CO2 per 21.3	DME T CO2 per 21.3	
MWh from 45% efficient power plants	2.818+00	16,475,030	mmbtu,only production, no CCS	mmbtu,only production, CO2 harvest	NOT COUNTING LIFECYCLE	NOT COUNTING UFECYCLE	NOT COUNTING UFECYCLE	NOT COUNTING UFECYCLE	NOT COUNTING UFECYCLE	NOT COUNTING UFECYCLE	mmbtu, NOT COUNTING LIFECYCLE	mmbtu, NOT COUNTING LIFECYCLI	
# of 10 MW plants that can be run for 1 year, 45%	3.218-05	188.0	1.93	0.68	1.23	1.65	1.48	1.68	2.42	0.33	3 1.80	1.8	
Equivalent # of 6 mtpa LNG train (BTU basis)	6.87E-08	0.40				CASE	NOTES						
Tonnes LNG equivalent	0.41	2,403,830	HAWAII d	istillate, res	id and coal	import (125	T BTU)						
Metric Tonnes coal equiv	1.04	6,097,520											
Tonnes oil equivalent (TOE)	0.500	2,931,500	Gas price -	\$40 per mmb	tu								
Tonnes resid equiv	0.530	3,107,390		50 per mwh (a									
Gal LPG equiv	234	1.371.942.000		be displaced b			mmonia plant	s)					
Gal Gasoline equiv	172	1,008,436,000		cargo ship de									
Gal Ethanol equiv	253	1,483,339,000	Fuel cost fo	or ammonia p	er year - \$2.0	bb. Fuel cost	for power ('fi	ree' heat fron	n CHP) - \$12 5	per			
	255	1,483,339,000		or gas per yea	- \$37	bb. Euel cost	for nower ('fr	ree' heat fron	o CHP) - \$228	ner MWH			
Price NH3	\$350			or diesel per y				ree' heat from					
Total NH3 cost \$		2,052,050,000	MWH.	, alessiper ,			ioi ponei (ii		,				
Fuel cost for power, \$/kwh from NH3	\$ 0.125		Fuel cost fo	or coal per yea	ar - \$0.3 l	ob. Fuel cost f	or power ('fre	ee' heat from	CHP) - \$30) per MWH.			
Price NATURAL GAS	\$30.00												
Total Natural Gas cost \$		\$ 3,746,457,000	Fuel price r	not the whole	story.								
Fuel cost for power for power, \$/kwh from gas	\$ 0.228			nuch easier to			-						
Price GASOLINE	\$4.00			nuch cleaner									
Total Gasoline cost \$		\$ 4,033,744,000						cales betwee Coal and gas (50 M. At a			
Fuel cost for power,	\$ 0.313							tes CHP (hea		ve AC, hot			
S/kwh from gasoline Price LPG	\$4.00							g fuels (perha					
Total LPG cost \$		\$ 5,487,768,000	electricity.										
Fuel cost for power,	\$ 0.334	J, 467, 706,000						round the wo					
\$/kwh from LPG			higher price		onstieu. That	existing dem	and for fuel c	oil, LPG, LNG I	ias establishe	a much			
Price DIESEL	\$4.00												
Total Diesel cost \$		\$ 3,658,512,000											
Fuel cost for power, \$/kwh from diesel	\$ 0.284												
Price COAL	\$50												
Total Coal cost \$		\$ 304,876,000											
Fuel cost for power, \$/kwh from coal	\$ 0.024												
Price ETHANOL	\$5.00												
Total Ethanol cost \$		\$ 7,416,695,000											
Fuel cost for power, S/kwh from ethanol	\$ 0.452												
S/kwh from ethanol MegaTonnes CO2 saved													

Hawaii resid/distillate

Most of Hawaii's electricity is generated from heavy hydrocarbons. This is expensive (HI power more than 3X cost of mainland) and environmentally destructive, 35-40 cents/kwh). Hawaii is working very hard to reduce hydrocarbon reliance (small scale LNG, renewables energy efficiency).

There is great scope for this since power is so expensive. But the cheapest way is through ammonia.

Displacing all of HI resid, fuel oil and coal about equivalent to 6 MMTPA NH3 (about 7 plants or 140 cargo ship deliveries.) Ammonia at \$350/tonne has a fuel cost of 13 cents / kwh (not counting credit for CHP from ammonia diesel gen sets).

	EL RESU					COST, T	HERMO AND CO2	MATRIX				
USER INPUTS ALLOWED IN GREEN CELLS	ALL VALUES EQUIV 1 MT NH3	ALL VALUES CORRESPOND TO CASE PARAMETERS		AMMONIA	NATURAL GAS	GASOLINE	LPG	DIESEL	COAL	ETHANOL	METHANOL	DME
REQUIRED INPUT or CALCULATE Tonnes NH3 for your scenario in D4	1.00	1,600,000		INPUT Price of NH3 delivered to site, \$ per tonne	INPUT Price of gas delivered to site, \$ / mmbtu	INPUT Price of gasoline delivered to site, \$ / gal	INPUT Price of LPG delivered to site, \$ / gal	INPUT Price of diesel delivered to site, \$ / gal	INPUT Price of coal delivered to site, \$ / tonne	INPUT Price of ethanol delivered to site, \$ / gal	INPUT Price of methanol delivered to site, \$ / tonne	INPUT Price of DN delivered to site, : / tonne
OPTIONAL USER- DEFINED VARIABLE. ENTER VARIABLE NAME IN THIS CELL ENTER (1 T INT3 BASIS) IN CS. ITERATE DA TO ACHIEVE DESIRED QUANTITY IN DS		0.00		\$500	\$23.00	\$2.90	\$2.15	\$3.20	\$100	\$4.00	\$300	\$420
MMBTU (or 1000 CF gas equiv) contained in NH3	21.32	34,108,800		Tonnes NH3 for 21.3 MMBTU	MMBTU gas for 21.3 MMBTU	Gal gasoline for 21.3 MMBTU	Gal LPG for 21.3 MMBTU	Gal diesel for 21.3 MMBTU	Tonnes coal for 21.3 MMBTU	Gal ethanol for 21.3 MMBTU	Tonnes methanol for 21.3 MMBTU	Tonnes DME for 21. MMBTU
MMBTU gas required for NH3	32.0	51,200,000		14	21.3	172	234	154	1.0	253	0.982	. 0
TCF natural gas required for NH3	2.942-08	0.047		NH3 Fuel Cost (for 21.3 mmbtu) - This Scenario	Gas Fuel Cost (for 21.3 mmbtu) - This Scenario	Gasoline Fuel Cost (for 21.3 mmbtu) - This	LPG Fuel Cast (for 21.3 mmbtu) - This Scenario	Diesel Fuel Cost (for 21.3 mmbtu) - This Scenario	Coal Fuel Cost (for 21.3 mmbtu) - This Scenario	Ethanol Fuel Cost (for 21.3 mmbtu) - This	Methanol Fuel Cost (for 21.3 mmbtu) -	DME Fuel Cost (for 21.3 mmbtu) - This
Tonnes water produced from NH3	1.588+00	2,528,000		\$500	\$490	Scenario \$499	\$503	\$499	\$104	Scenario \$1,012	This Scenario \$294	Scenario \$25
# Global ammonia industry	6.678-09	0.011		kwh from 21.3 mmbtu at 45% efficiency (gas/nh3	kwh from 21.3 mmbtu at 45% efficiency (gas/nh3	kwh from 21.3 mmbtu at 35% efficiency (coal like)	kwh from 21.3 mmbtu at 45% efficiency (gas/nh3	kwh from 21.3 mmbtu at 35% efficiency (coal like)	kwh from 21.3 mmbtu at 35% efficiency (coal like)	kwh from 21.3 mmbtu at 45% efficiency (gas/nh3	kwh from 21.3 mmbtu at 45%	kwh from 21.3 mmbtu at 45%
# of World Scale NH3	1.258-06	2.00000		like) 2800	like) 2800	2200	like) 2800	2200	2200	8ke) 2800	efficiency (gas/nh3 2800	efficiency (gas/nh3
Number of 60,000 cbm	2.446-05	39		Fuel cost for power,	Fuel cost for power for	Fuel cost for power,	Fuel cost for power,	Fuel cost for power,	Fuel cost for power,	Fuel cost for power,	Fuel cost for power, S/kwh from	Fuel cost for power,
vessels Number of 80 tonne	0.0125	20.000		\$/kwh from NH3 \$0.179	power, \$/kwh from gas \$0.175	\$/kwh from gasoline \$0.227	S/kwh from LPG	5/kwh from diesel \$0.227	\$/kwh from coal \$0.047	\$/kwh from coal \$0.361	methanol \$0.105	S/kwh from DME
railcar deliveries	1.006-06	1.6	AMMONIA, NO	AMMONIA w/	NATURAL GAS	GASOLINE	LPG	DIESEL	COAL	ETHANOL	METHANOL	DME
pipeline MWh from 45% efficient			CCS T CO2 per 21.3	HARVEST T CO2 per 21.3	T CO2 per 21.3 mmbtu,	T CO2 per 21.3 mmbtu,	T CO2 per 21.3 mmbtu,	T CO2 per 21.3 mmbtu,		T CO2 per 21.3 mmbtu,	T CO2 per 21.3	T CO2 per 21.3
power plants	2.816+00	4,496,000	mmbtu,only production, no CCS	mmbtu,only production, CO2 harvest	UFECYCLE	NOT COUNTING UFECYCLE	NOT COUNTING UFECYCLE	NOT COUNTING LIFECYCLE	LIFECYCLE	NOT COUNTING LIFECYCLE	COUNTING LIFECYCLE	COUNTING LIFECYCL
can be run for 1 year, 45%	3.218-05	51.295	1.93	0.68	1.23	1.65	1.48	1.68	2.42	0.33	1.80	1.8
LNG train (BTU basis)	6.872-08	0.11	4 MAA AA	is about 140 to	M rupple = 4000		NOTES					
Tonnes LNG equivalent	0.41	656,000	To generate	4 mm MWh at		6 equivalent to 1.	6 MM Tonnes p	per year of amn	nonia (taking no	account of		
Metric Tonnes coal equiv	1.04	1,664,000	CHP) Fuel cost for	power (no cred	lit for CHP and	flexibility in disp	atch) at \$500/t	tonne is \$180 p	er MWh			
Tonnes oil equivalent (TOE)	0.500	800,000	This can be o	delivered by 40	cargo loads							
Tonnes resid equiv	0.530	848,000	Server and Manufacture			deployed in va						
Gal LPG equiv	234	374,400,000	On 2 of the r	najor islands, el	ectricity rates a	are over 40 cent	s/kwh. Even or	n Oahu, they ar	e 30.			
Gal Gasoline equiv	172	275,200,000										
Gal Ethanol equiv	253	404,800,000		hibit 6: Impact of Enge	m Efficiency Distribu	ted Generation, and R	enewable Enermy				[
Price NH3	\$500		-		Adde	d Cumulativ	e Total bu 202	0				
Total NH3 cost \$		800,000,000	EnergyE	fliciency Savings	twh/year) (MWh/y	rear) (MWh/yea						
Fuel cost for power, \$/kwh from NH3	\$ 0.179		Distribut	ed Generation	189,563 40	1,572 76	2,466 952,0 1,228 2,595,0					
Price NATURAL GAS	\$23.00		Source: PU Report for	C Docket No. 2010-0037; Pi	JC Report to the 2014 Legis		0,089 5,897,6	itus Abou	at 440 MW			
Total Natural Gas cost \$		\$ 783,840,000	Office Ren 2013; Haw	ewable Energy Projects Dire all Public Utilities Commissio	ctory; 2023 integrated Resi on Document Management	eport for the year ending D surce Planning Report, Hawt System (DMS); Regulatory a	ian Electric Companies, Au gency postings and notices	abou ICF	it 4 mm MWh			
Fuel cost for power for	\$ 0.175		Aralysis.									
power, \$/kwh from gas	\$2.90		will likely be	producing 952,029 M	Wh/year in customer	l electricity demand by generated electricity a	nd another 2,595,612					
Price GASOL PH			MWh/year i	a utility scale second	ele generation. The tot	al impact of these tree						
Price GASOLINE			annual dem			in by a total of 3,780,0		n				
Total Gasoline cost \$		\$ 798,080,000	annual dem 2013-2020.	and for fossil-fuel-base	ed electricity generatio	on by a total of 3,780,0		n				
Total Gasoline cost \$ Fuel cost for power, \$/kwh from gasoline	\$ 0.227	5 798,080,000	annual dem 2013-2020.		ed electricity generatio	on by a total of 3,780,0		n				
Total Gasoline cost \$ Fuel cost for power, \$/kwh from gasoline Price LPG			2013-2020. Averag	and for fossil-fuel-base	ed electricity generation	on by a total of 3,780,0		n				
Total Gasoline cost \$ Fuel cost for power, \$/kwh from gasoline Price LPG Total LPG cost \$	\$ 0.227 \$2.15	5 798,080,000 S 804,960,000	2013-2020. Averag	and for fossil-fuel-base e Electric Rate I	Ad electricity generation	in by a total of 3,780,0 y: 2011	89 <u>MWb</u> /year between					
Total Gasoline cost \$ Fuel cost for power, \$/kwh from gasoline Price LPG	\$ 0.227		annual dem 2013-2020. Averag	and for fossil-fuel-base e Electric Rate I Cents/kWh	ed electricity generation	on by a total of 3,780,0 y: 2011 40.2	42.0	n				
Total Gasoline cost \$ Fuel cost for power, \$/kwh from gasoline Price LPG Total LPG cost \$ Fuel cost for power,	\$ 0.227 \$2.15		annual dem 2013-2020. Averag	e Electric Rate Cents/kWh	St electricity generation	on by a total of 3,780,0 y: 2011 40.2	42.0 17.2	n				
Tetal Gasoline cost 5 Feel cost for power, Sythant from pasoline Price LPG Tetal LPG cost 5 Feel cost for power, Sythant from LPG Price DESEL Tetal Desel cost 5	\$ 0.227 \$2.15 \$ 0.180		annual dem 2013-2020. Averag	e Electric Rate Cents/kWh	Ad electricity generation	en by a total of 3,780,0 y: 2011 40.2 14.4	42.0	n				
Total Gasoline cost \$ Fuel cost for power, \$/kwh from gasoline Price LPG Total LPG cost \$ Fuel cost for power, \$/kwh from LPG Price DIESEL	\$ 0.227 \$2.15 \$ 0.180	\$ 804,960,000	annual dem 2013-2020. Averag	e Electric Rate Cents/KWh asse Rates Energy 21.2	St electricity generation	en by a total of 3,780,0 y: 2011 40.2 14.4	42.0 17.2	n				
Tetal Gasoline cost S Fuel cost for power, Shahn from gasoline Price UPG Total LPG cost S Fuel cost for power, Shahn from LPG Price DESLL Tetal Diesel cost S Fuel cost for power, Fuel cost for power	\$ 0.227 \$2.15 \$ 0.180 \$ 3.20	\$ 804,960,000	annual dem 2013-2020. Averag	e Electric Rate Cents/KWh ase Rates Energy Costs HECO Godiuj	A electricity generation	40.2 14.4 20.8 HELCO (Hawilli)	42.0 17.2 24.0 KiUC Keuai)	n				
Tetal Gasoline cost \$ Feel cost for prover, Shash from pasoline Price LPG Tetal LPG cost \$ Tetal CPG cost \$ Price DISSL Tetal Dissel cost \$ Tetal Dissel cost \$ Tetal Dissel cost \$ File cost for prover, \$hash from direct	\$ 0.227 \$2.15 \$ 0.180 \$3.20 \$ 0.227	\$ 804,960,000	annual dem 2013-2020. Averag	e Electric Rate Cents/KWN ase Rates 7.4 Energy 21.7 Costs 21.7 HECCO Ochu) 200000 7.200	d electricity generation	40.2 14.4 20.8 HELCO (Hawilli)	42.0 17.2 24.8 KIUC KIUC 50 50 50 50	n				
Tetal Gazoline cont \$ Feel cost for power, \$7Nah from gazoline Price LPG Tetal LPG cost \$ Tetal CPG cost \$ Price DISSE. Price DISSE Tetal Dissel cost \$ Feel cost for power, \$7Nah from dissel Price COAL	\$ 0.227 \$2.15 \$ 0.180 \$3.20 \$ 0.227	5 804,860,000 5 798,720,000	annual dem 2013-2020. <u>Averag</u> B	e Electric Rate Cents/KWh ase Rates 7.4 Energy 21.7 Energy 21.7 HECCO Costu 22000 1000hu	35.5 11.0 4.5 MECO (Maru) 4.30 1.41	40.2 14.4 25.8 HELCO (flavali)	42.0 17.2 24.8 KIUC Keuai)	n				
Tetal Gasoline cost 5 Feet cost for power, Shah from gasoline Feet Cost for power, Shah from UG Feet cost for power, Shah from UG Feet cost for power, Shah from disel Feet cost for power, Shah from disel Feet cost are power, Shah from disel Feet cost are power, Shah from disel Feet cost are power, Feet	\$ 0.227 \$2.15 \$ 0.180 \$ 1.27 \$ 0.227 \$100	5 804,860,000 5 798,720,000	Contraments Contraments Exercision Exercision Contraments Exercisi	e Electric Rate Cents/KWh ase Rates 7.4 Energy 21.7 Energy 21.7 HECCO Costu 22000 1000hu	35.5 11.0 24.5 MECO (Mau) 6.300 4.30 720 720	40.2 14.4 25.8 HELCO (flavnili) 40.2 14.4 25.8 HELCO (flavnili) 40.00 HELCO (flavnili) 40.00 HELCO (flavnili) 40.00 HELCO (flavnili) 40.00 HELCO (flavnili) 40.00 HELCO (flavnili) 40.2 HELCO (flavnil	42.0 17.2 24.8 KUCC KUCC 500 100 100 100 100					
Tetal Gasoline cost 5 Feed cost for power, Shack from gasoline Tetal LPG cost 5 Feed Cost 6 Feed Cost	\$ 0.227 \$2.15 \$ 0.180 \$ 3.30 \$ 0.227 \$ 100 \$ 0.047	5 804,860,000 5 798,720,000	Contraments Contraments Exercision Exercision Contraments Exercisi	e Electric Rate Cents/KWh ase Rates 7.4 Energy 21.7 Energy 21.7 HECCO Costu 22000 1000hu	35.5 11.0 24.5 MECO (Mau) 6.300 4.30 720 720	40.2 14.4 25.8 HELCO (flavnili) 40.2 14.4 25.8 HELCO (flavnili) 40.00 HELCO (flavnili) 40.00 HELCO (flavnili) 40.00 HELCO (flavnili) 40.00 HELCO (flavnili) 40.00 HELCO (flavnili) 40.2 HELCO (flavnil	42.0 17.2 24.8 KUCC KUCC 500 100 100 100 100	n				
Tetal Gaudine cost S Feed cost for power, Shade from gaudine Feed UPG cost S Feed UPG cost S Feed Cost Georgen, Shade from UPG Feed DESEL Tetal Cost Georgen, Shade from desel Feed cost s	\$ 0.227 \$2.15 \$ 0.180 \$ 3.30 \$ 0.227 \$ 100 \$ 0.047	5 804,360,000 5 798,720,000 5 186,400,000	Contraments Contraments Exercision Exercision Contraments Exercisi	e Electric Rate Cents/KWh ase Rates 7.4 Energy 21.7 Energy 21.7 HECCO Costu 22000 1000hu	35.5 11.0 24.5 MECO (Mau) 6.300 4.30 720 720	40.2 14.4 25.8 HELCO (flavnili) 40.2 14.4 25.8 HELCO (flavnili) 40.00 HELCO (flavnili) 40.00 HELCO (flavnili) 40.00 HELCO (flavnili) 40.00 HELCO (flavnili) 40.00 HELCO (flavnili) 40.2 HELCO (flavnil	42.0 17.2 24.8 KUCC KUCC 500 100 100 100 100					

Hawaii Alternatives Goals

Hawaii's goal is to have capacity for 4 MM MWh from Solar, wind and efficiency by 2020.

This is equivalent to 1.6 MM TPA ammonia. And likely much more expensive.

		1/8 of m	nidwest pro	pane dema	nd and IL an	nual purcha	se of NH3 (1 MM tonne	es)					
MOD	EL RESU	JLTS				COST, T	HERMO AND CO2	MATRIX						
USER INPUTS ALLOWED IN GREEN CELLS	ALL VALUES EQUIV 1 MT NH3	ALL VALUES CORRESPOND TO CASE PARAMETERS		AMMONIA	NATURAL GAS	GASOLINE	LPG	DIESEL	COAL	ETHANOL	METHANOL	DME		
REQUIRED INPUT or CALCULATE Tonnes NH3 for your scenario in D4	1.00	1,000,000		INPUT Price of NH3 delivered to site, \$ per tonne	INPUT Price of gas delivered to site, \$ / mmbtu	INPUT Price of gasoline delivered to site, \$ / gal	INPUT Price of LPG delivered to site, \$ / gal	INPUT Price of diesel delivered to site, \$ / gal	INPUT Price of coal delivered to site, \$ / tonne	INPUT Price of ethanol delivered to site, \$ / gal	INPUT Price of methanol delivered to site, \$ / tonne	INPUT Price of DME delivered to site, \$ / tonne		
OPTIONAL USER- DEFINED VARIABLE ENTER VARIABLE NAME IN THIS CELL ENTER (1 T INIS BASIS) IN CS. ITERATE DA TO ACHIEVE DESIRED QUANTITY IN DS		0.00		\$350	\$12.00	\$4.00	\$3.50	\$4.00	\$100	\$4.00	\$300	\$420		
MMBTU (or 1000 CF gas equiv) contained in NH3	21.32	21,318,000		Tonnes NH3 for 21.3 MMBTU	MMBTU gas for 21.3 MMBTU	Gal gasoline for 21.3 MMBTU	Gal LPG for 21.3 MMBTU	Gal diesel for 21.3 MMBTU	Tonnes coal for 21.3 MMBTU	Gal ethanol for 21.3 MMBTU	Tonnes methanol for 21.3 MMBTU	Tonnes DME for 21.3 MMBTU		
MMBTU gas required for NH3	32.0	32,000,000		14	21.1	172	23	154	1.0	251	0.982	0.71		
TCF natural gas required for NH3	2.948-08	0.029		NH3 Fuel Cost (for 21.3 mmbtu) - This Scenario	Gas Fuel Cost (for 21.3 mmbtu) - This Scenario	21.3 mmbtu) - This Scenario	LPG Fuel Cost (for 21.3 mmbtu) - This Scenario	Diesel Fuel Cost (for 21.3 mmbtu) - This Scenario	Coal Fuel Cost (for 21.3 mmbtu) - This Scenario	Ethanol Fuel Cost (for 21.3 mmbtu) - This Scenario	(for 21.3 mmbtu) - This Scenario	21.3 mmbtu) - This Scenario		
Tonnes water produced from NH3 E Global ammonia	1.588+00	1,580,000		\$350 kwh from 21.3 mmbtu at		\$688	\$819 kwh from 21.3 mmbtu at	\$624	\$104 kwh from 21.3 mmbtu at	\$1,012 kwh from 21.3 mmbtu at	\$294 kwh from 21.3	\$298 kwh from 21.3		
# Grobal ammonia industry # of World Scale NH3	6.678-09	0.007		45% efficiency (gas/nh3 like)	45% efficiency (gas/nh3 like)	35% efficiency (coal like)	45% efficiency (gas/nh3 like)	35% efficiency (coal like)	35% efficiency (coal like)	45% efficiency (gas/nh3 like)	mmbtu at 45% efficiency (gas/nh3	mmbtu at 45% efficiency (gas/nh3		
Plants Number of 60,000 cbm	1258-06	1.25		2800	280	2200	2800	2200	2200	2800	Fuel cost for power,	2800		
Number of 60,000 cbm vessels Number of 80 tonne	2,448-05	24		Fuel cost for power, \$/kwh from NH3	Fuel cost for power for power, S/kwh from gas	Fuel cost for power, 5/kwh from gasoline	Fuel cost for power, \$/kwh from LPG	Fuel cost for power, \$/kwh from diesel	Fuel cost for power, \$/kwh from coal	Fuel cost for power, \$/kwh from coal	\$/kwh from methanol	Fuel cost for power, \$/kwh from DME		
Number of 80 tonne railcar deliveries	0.0125	12,500	AMMONIA, NO	\$0.125 AMMONIA w/	\$0.091	\$0.313	\$0.293	\$0.284	\$0.047	\$0.361	\$0.105	\$0.107		
pipeline MWh from 45% efficient	1.005-06	1.0	CCS T CO2 per 21.3	HARVEST T CO2 per 21.3	NATURAL GAS	GASOLINE T CO2 per 21.3 mmbtu,	LPG T CO2 per 21.3 mmbtu,	DIESEL T CO2 per 21.3 mmbtu,	COAL T CO2 per 21.3 mmbtu,	ETHANOL T CO2 per 21.3 mmbtu,	METHANOL T CO2 per 21.3	DME T CO2 per 21.3		
power plants	3.215-05	2,810,000	mmbtu,only production, no CCS	mmbtu,only production, CO2 harvest	UFECYCLE	NOT COUNTING UFECYCLE	NOT COUNTING UFECYCLE	NOT COUNTING LIFECYCLE	NOT COUNTING LIFECYCLE	UFECYCLE	COUNTING LIFECYCLE	COUNTING LIFECYCLE		
can be run for 1 year, 45%	3.21E-05	32.1	1.93	0.68	1.23	1.65	1.48 NOTES	1.68	2.42	0.33	1.80	1.80		
Equivalent # of 6 mtpa LNG train (BTU basis) Tonnes LNG equivalent	0.41	410,000	Midwest	ertilizer He	eat and Elect	2.0	NOTES							
Metric Tonnes coal emain	100	1,040,000												
Tonnes oil equivalent	0.500	500,000				v of LPG for hea propane from :								
(TOE) Tonnes resid equiv	0.530	530,000				or drying extra								
Gal LPG equiv	234	234.000.000	Prices rose to	o \$4-5 per gallo	n (normally arc	ound \$2). And a	lot of people g	ot really cold a	nd mad.					
Gal Gasoline equiv	172	172.000.000				CAN L.				14				
Gal Ethanol equiv	253	253,000,000	ammonia fe	rtilizer). If 12.5	% of LPG dema	% of Midwest p nd were stored	at ammonia fa	cilities at the en	d of harvesting	and the start	1	I		
Price NH3	\$350					ng low because g the costs and								
Total NH3 cost \$		350,000,000				The total cost IM and at \$4/ga								
Fuel cost for power, S/kwh from NH3	\$ 0.125				of risk managen									
Price NATURAL GAS	\$12.00					s with Sturman								
Total Natural Gas cost \$		\$ 255,600,000	units are also	o ideally suited		conditioned pov								
Fuel cost for power for power, \$/kwh from gas	\$ 0.091		importantly,	crop drying.										
Price GASOLINE	\$4.00					al infrastructur G infrastructure								
Total Gasoline cost \$		\$ 688,000,000				will be happy to								
Fuel cost for power, S/kwh from gasoline	\$ 0.313													
Price LPG	\$3.50													
Total LPG cost \$		\$ 819,000,000												
Fuel cost for power, \$/kwh from LPG	\$ 0.293													
Price DIESEL	\$4.00													
Total Diesel cost \$		\$ 624,000,000												
Fuel cost for power, \$/kwh from diesel	\$ 0.284													
Price COAL	\$100													
Total Coal cost S		\$ 104,000,000												
Fuel cost for power, S/kwh from coal	\$ 0.047													
Price ETHANOL	\$4.00													
Total Ethanol cost \$		\$ 1,012,000,000												
Fuel cost for power, S/kwh from ethanol	\$ 0.361													

MidWest LPG Demand

The Midwestern states ran dangerously low of LPG for heat and farm use this winter with emergency measures required. Even with growing availability of propane from shale oil and gas, the infrastructure for delivery and storage of propane was strained by high demand for drying extra wet crops followed by record cold.

Prices rose to \$4-5 per gallon (normally around \$2). And a lot of people got really cold and mad.

1/8 of MidWest LPG demand is 1 MM TPA NH3. Even at \$500 per tonne, ammonia BTUs are 20% cheaper than \$4/gal LPG.

If ammonia diesel gens were sited on farms and neighborhoods, they would produce wellconditioned power for local use and utility offtake at 45% efficiency. The units are also ideally suited for CHP (total efficiency up to 75% or so) which can be used for district heating and, very importantly, crop drying.

One other huge advantage is countercyclical infrastructure use. The ammonia infrastructure is weighted toward winter and spring (for planting) and the LPG infrastructure is weighted toward summer and fall (for crop drying and winter heating). The ammonia producers might be happy to have profitable smoothing of their storage and distribution.

1000	EL RESU	175				I Diesel (700	HERMO AND CO2	MATRIX				
USER INPUTS		ALL VALUES CORRESPOND TO CASE PARAMETERS										
ALLOWED IN GREEN CELLS	EQUIV 1 MT NH3	CORRESPOND TO CASE PARAMETERS		AMMONIA	NATURAL GAS	GASOLINE	LPG	DIESEL	COAL	ETHANOL	METHANOL	DME
REQUIRED INPUT or	1.00	4,487,179		INPUT Price of NH3 delivered to site, \$	INPUT Price of gas delivered to site, \$ /	INPUT Price of gasoline delivered to	INPUT Price of LPG delivered to site, \$ /	INPUT Price of diesel delivered to site, \$ /	INPUT Price of coal delivered to site, \$ /	INPUT Price of ethanol delivered to	INPUT Price of methanol	INPUT Price of DME delivered to site, \$
for your scenario in D4	1.00	4,467,175		per tonne	mmbtu	site, \$ / gal	gal	gal	tonne	site, \$ / gal	methanol delivered to site, \$ / tonne	/ tonne
OPTIONAL USER- DEFINED VARIABLE. ENTER VARIABLE NAME IN THIS CELL ENTER (1 T NH3 BASIS) IN CS. ITERATE DA TO ACHEVE DESIRED QUANTITY IN DS		0.00		\$500	\$10.00	\$4.00	\$4.00	\$4.00	\$100	\$4.00	\$300	\$420
MMBTU (or 1000 CF gas	21.32	95,657,692		Tonnes NH3 for 21.3 MMBTU	MMBTU gas for 21.3	Gal gasoline for 21.3 MMBTU	Gal LPG for 21.3 MMBTU	Gal diesel for 21.3 MMBTU	Tonnes coal for 21.3 MMBTU	Gal ethanol for 21.3 MMBTU	Tonnes methanol for 21.3 MMBTU	Tonnes DME for 21.3 MMBTU
MMBTU gas required for	32.0	143,589,744		1.0	21.1			15			0.982	0.71
NH3 TCF natural gas required	1000	0.132		NH3 Fuel Cost (for 21.3	Gas Fuel Cost (for 21.3	Gasoline Fuel Cost (for	LPG Fuel Cost (for 21.3	Diesel Fuel Cost (for 21.3	Coal Fuel Cost (for 21.3	Ethanol Fuel Cost (for	Methanol Fuel Cost	DME Fuel Cost (for
for NH3				mmbtu) - This Scenario	minolog - mis scenario	Scenario	mmbtu) - This Scenario	mmbtu) - This Scenario	mmbtu) - This Scenario	21.3 mmotu) - This Scenario	(for 21.3 mmotu) - This Scenario	21.3 mmotu) - This Scenario
from NH3	1.588+00	7,089,744		\$500 kwb from 21.3 mmbtu at	\$213 kwh from 21.3 mmbtu at	\$688	\$936 kwh from 21.3 mmbtu at	\$624	\$104	\$1,012 kwh from 21.3 mmbtu at	\$294 kmb from 21.3	\$298 kwh from 21.3
II Global ammonia industry	6.672-09	0.030		kwn from 21.3 mmbtu at 45% efficiency (gas/nh3 like)	45% efficiency (gas/nh3 like)	kwh from 21.3 mmbtu at 35% efficiency (coal like)	45% efficiency (gas/nh3 like)	kwh from 21.3 mmbtu at 35% efficiency (coal like)	kwh from 21.3 mmbtu at 35% efficiency (coal like)	45% efficiency (gas/nh3 like)	nmbtu at 45% efficiency (gas/nh3	nmbtu at 45% efficiency (gas/nh3
# of World Scale NH3 Plants	1.258-06	5.60897		2800	2800	2200	2800	2200	2200	280	2800	280
Number of 60,000 cbm	2.446-05	109		Fuel cost for power, \$/kwh from NH3	Fuel cost for power for power, S/kwh from ray	Fuel cost for power, \$/kwh from pasoline	Fuel cost for power, \$/kwh from LPG	Fuel cost for power, \$70wh from diesel	Fuel cost for power,	Fuel cost for power, S/kwh from coal	Fuel cost for power, S/kwh from	Fuel cost for power, S/kwh from DME
Number of 80 tonne	0.0125	56,090		\$0.179	power, 5/kwn trom gas	\$0.313	\$0.334	\$0.284	\$0.047	\$0.361	methanol \$0.105	\$0.107
railcar deliveries			AMMONIA, NO	AMMONIA w/								
pipeline	1.005-06	4.5	CCS T CO2 per 21.3	HARVEST T CO2 per 21.3	NATURAL GAS T CO2 per 21.3 mmbtu,	GASOLINE T CO2 per 21.3 mmbtu,	LPG T CO2 per 21.3 mmbtu,	DIESEL T CO2 per 21.3 mmbtu,	COAL T CO2 per 21.3 mmbtu,	ETHANOL T CO2 per 21.3 mmbtu,	METHANOL	DME T CO2 per 21.3
power plants	2.818+00	12,608,974	mmbtu,only production, no CCS	mmbtu,only production, CO2 harvest	NOT COUNTING UFECYCLE	NOT COUNTING UFECYCLE	NOT COUNTING UFECYCLE	NOT COUNTING UFECYCLE	NOT COUNTING UFECYCLE	NOT COUNTING UFECYCLE	mmbtu, NOT COUNTING LIFECYCLE	mmbtu, NOT COUNTING LIFECYCLE
# of 10 MW plants that can be run for 1 year, 45%	3.218-05	143.9	1.93	0.68	1.23	1.65	1.48	1.68	2.42	0.33	1.80	1.80
Equivalent # of 6 mtpa LNG train (BTU basis)	6.87E-08	0.31				CASE	NOTES					
Tonnes LNG equivalent	0.41	1,839,744	Displacing 20%	i via blending (or p	oure ammonia) po	tentially saves a g	reat deal of mone	Υ.				
Matrix Tanan	1.04	4,666,667	\$500/tonne ar	nmonia 20% chear	per than \$4/gal di	esel						
Metric Tonnes coal equiv		.,,	This could also	substantially assis	st on emissions (N	Ox. HC. PM). Pure	ammonia elimina	ates these emissio	ns (with, at worst	simple SCR)		
Tonnes oil equivalent (TOE)	0.500	2,243,590	Ammonia blen	ds dilutes emission	ns and, likely, subs	tantially reduces I	HC/PM with optim	nization of engine	s (requires some r	esearch).		
Tonnes resid equiv	0.530	2,378,205	Much simpler	to implement than	n LNG rail (distribu	ition, handling, fle	xibility for operat	ions/arbitrage, fu	el sourcing). For e	xample,		
Gal LPG equiv	234	1,050,000,000	diesel/LNG ble	nding is not practi	cal. Fuel switchin	g on the same loc	omotive not pract	tical.				
Gal Gasoline equiv	172	771,794,872										
Gal Diesel equiv	156	700,000,000									1	
Price NH3												
	0000											
Total NH3 cost \$		2,243,589,744										
Fuel cost for power, \$/kwh from NH3	\$ 0.179											
Price NATURAL GAS	\$10.00											
Total Natural Gas cost \$		\$ 955,769,231										
Fuel cost for power for power, \$/kwh from gas	\$ 0.076											
power, S/kwh from gas Price GASOLINE												
	54.00											
Total Gasoline cost \$		\$ 3,087,179,487										
Fuel cost for power, \$/kwh from gasoline	\$ 0.313											
Price LPG	\$4.00											
Total LPG cost \$		\$ 4,200,000,000										
Fuel cost for power,	\$ 0.334											
\$/kwh from LPG	-											
Price DIESEL	\$4.00											
Total Diesel cost \$		\$ 2,800,000,000										
Fuel cost for power, S/kwh from diesel	\$ 0.284											
Price COAL	\$100											
Total Coal cost \$		\$ 466,666,667										
Fuel cost for power.	\$ 0.047											
S/kwh from coal												
	\$4.00											
Price ETHANOL	_											
Price ETHANOL Total Ethanol cost \$		\$ 4,541,025,641										
	\$ 0.361	\$ 4,541,025,641										

Railroad (displace diesel)

Diesel fuel is the major operating expense of long haul rail and is being challenged by increasingly stringent environmental regulations.

Displacing 20% via blending (or pure ammonia) requires about 4.5 MM TPA NH3 and potentially saves a great deal of money. \$500/tonne ammonia 20% cheaper than \$4/gal diesel

This could also substantially assist on emissions (NOx, HC, PM). Pure ammonia eliminates these emissions (with, at worst, simple SCR). Ammonia blends dilutes emissions and, likely,substantially reduces HC/PM with optimization of engines (requires some research).

Much simpler to implement than LNG rail (distribution, handling, flexibility for operations/arbitrage, fuel sourcing). For example, diesel/LNG blending is not practical. Fuel switching on the same locomotive not practical.

Global Markets - Overview

- Alaska (displace diesel across the state, supply Anchorage, alternate export market for Alaska gas)
- Hawaii (displace diesel, resid and gasoline across the islands)
- Northeast/MidAtlantic (energy security, grid stability, displace fuel oil)
- Midwest (energy security, grid stability, displace fuel oil/LPG)
- Caribbean (displace diesel, resid and gasoline across the islands)
- Japan (alternative to expensive LNG and coal, replacing nuclear)
- Indonesia (displace diesel, resid and gasoline across the islands)
- China (clean cities, rural access, much easier than gas)
- Europe (energy security, CHP, DG, fertilizer/fuel)
- Africa, South America (ammonia diesel gen, clean cities, rural access)

		RHOOD ENE	RGY STATIO	ON (LIKE A G	GAS STATIO				ar Of Amm	onia	-			
USER INPUTS	ALL VALUES	ALL VALUES		AMMONIA	NATURAL GAS	COST, TI	HERMO AND CO2	DIESEL	COAL	ETHANOL	METHANOL	DME		
CELLS	EQUIV 1 MT NH3	CORRESPOND TO CASE PARAMETERS									INPUT Price of			
REQUIRED INPUT or CALCULATE Tonnes NH3 for your scenario in D4	1.00	4,060		INPUT Price of NH3 delivered to site, \$ per tonne	INPUT Price of gas delivered to site, \$ / mmbtu	INPUT Price of gasoline delivered to site, \$ / gal	INPUT Price of LPG delivered to site, \$ / gal	INPUT Price of diesel delivered to site, \$ / gal	INPUT Price of coal delivered to site, \$ / tonne	INPUT Price of ethanol delivered to site, \$ / gal	methanol delivered to site, \$ / tonne	INPUT Price of DME delivered to site, \$ / tonne		
OPTIONAL USER- OLFINED VARIABLE ENTER VARIABLE NAME IN THIS CELL ENTER (1 T NHS GASS) IN CS. ITERATE DA TO ACHEVE DESIRED QUANTITY IN DS		0.00		\$350	\$15.00	\$3.00	\$2.00	\$3.80	\$50	\$3.00	\$200	\$290		
MMBTU (or 1000 CF gas equiv) contained in NH3	21.32	86,558			MMBTU gas for 21.3 MMBTU	Gal gasoline for 21.3 MMBTU	Gal LPG for 21.3 MMBTU	Gal diesel for 21.3 MMBTU	Tonnes coal for 21.3 MMBTU	Gal ethanol for 21.3 MMBTU	Tonnes methanol for 21.3 MMBTU	Tonnes DME for 21.3 MMBTU		
MMBTU gas required for NH3	32.0	129,930		14	21.1	172	234	156	υ	25	0.982	0.71		
TCF natural gas required for NH3	2.946-08	0.000		NH3 Fuel Cost (for 21.3 mmbtu) - This Scenario	Gas Fuel Cost (for 21.3 mmbtu) - This Scenario	Gasoline Fuel Cost (for 21.3 mmbtu) - This	LPG Fuel Cost (for 21.3 mmbtu) - This Scenario	Diesel Fuel Cost (for 21.3 mmbtu) - This Scenario	Coal Fuel Cost (for 21.3 mmbtu) - This Scenario	Ethanol Fuel Cost (for 21.3 mmbtu) - This	Methanol Fuel Cost (for 21.3 mmbtu) -	OME Fuel Cost (for 21.3 mmbtu) - This		
Tonnes water produced from NH3	1.588+00	6,415		melbuj - Thi Scenario										
# Global ammonia	6.672-09	0.000		kwh from 21.3 mmbtu at 45% efficiency (gas/nh3	kwh from 21.3 mmbtu at 45% efficiency (gas/nh3	kwh from 21.3 mmbtu at 35% efficiency (coal like)	kwh from 21.3 mmbtu at 45% efficiency (gas/nh3	kwh from 21.3 mmbtu at 35% efficiency (coal like)	kwh from 21.3 mmbtu at 35% efficiency (coal like)	45% efficiency (gas/nh3	kwh from 21.3 mmbtu at 45%	kwh from 21.3 mmbtu at 45%		
If of World Scale NH3	1.258-06	0.01		184 <u>0)</u> 2800	18ke) 2800	2200	18ke) 2800	2200	220	like) 280	efficiency (gas/nh3	efficiency (gas/nh3 2800		
Number of 60,000 cbm	2.448-05	0		Fuel cost for power, S/kwh from NH3	Fuel cost for power for power, S/kwh from gas	Fuel cost for power, S/kwh from gasoline	Fuel cost for power, \$/kwh from LPG	Fuel cost for power, S/kwh from diesel	Fuel cost for power, S/kwh from coal	Fuel cost for power, S/kwh from coal	Fuel cost for power, S/kwh from	Fuel cest for power, S/kwh from DME		
Number of 80 tonne	0.0125	51		5/xwh from Nin3	power, 5/kwn trom gas	\$0.235	\$0.167	\$0.269	Syntech from coal	50.271	methanol \$0.070	S0.074		
railcar deliveries	1.005.06	0.0	AMMONIA, NO	AMMONIA w/	NATURAL GAS	GASOLINE	LPG	DIESEL	COAL	ETHANOL	METHANOL	DME		
pipeline MWh from 45% efficient	2.815+00	11,410	CCS T CO2 per 21.3	HARVEST T CO2 per 21.3	T CO2 per 21.3 mmbtu,	T CO2 per 21.3 mmbtu,	T CO2 per 21.3 mmbtu,	T CO2 per 21.3 mmbtu,	T CO2 per 21.3 mmbtu,	T CO2 per 21.3 mmbtu,	T CO2 per 21.3	T CO2 per 21.3		
power plants	3.218-05	11,410	production, no CCS	CO2 harvest	LIFECYCLE	UFECYCLE	LIFECYCLE	LIFECYCLE	UNICYCLE		COUNTING LIFECYCLE	COUNTING LIFECYCLE		
can be run for 1 year, 45%			1.93	0.68	1.23			1.68	2.43	0.33	1.80	1.80		
Equivalent # of 6 mtpa LNG train (BTU basis)	6.875-08	0.00	Local Energy St	ation Dispensing	1 75 Mm Gale Pa	r Year Of Ammoni	NOTES							
Tonnes LNG equivalent	0.41	1,665	2.53			ispense 1.5 MM ga		arader of aaroling	diaral in a year	This case				
Metric Tonnes coal equiv	1.04	4,223	examines a 'nei	ighborhood' amm	onia energy statio	on of approximate rban environment	ly the same scale	that could provide	e power and heat	to the				
Tonnes oil equivalent (TOE)	0.500	2,030	ammonia. The	prototype for thi	s is the MHI Mega	Ninja gas-driven g	enset (delivered o	on 40' trailer, 1.5 M	WW generator op	erating at 42.5%				
Tonnes resid equiv	0.530	2,152	efficiency, desig adsorptive air c	gned for combine conditioning.)	d heat/power tak	ing efficiency up to	o 75% for medium	pressure steam/	space and water h	neating and				
Gal LPG equiv	234	950,116				less than a gasoli								
Gal Gasoline equiv	172	698,376	instead of retail and fuel deliver	l interface with h ry logistics would	undreds of transa be similar.	ctions to untrained	d public per day).	But tank volume,	general regulator	ry requirements				
Gal Ethanol equiv	253	1,027,262	The average we	eekly volume wou	ld be about 35,00	0 gallons. We can	'design' for 40,00	00 gal/week peak	usage. A typical t	ank size for				
Gal Ethanol equiv	253	1,027,262	The average we	ekly volume wou	ld be about 35,00	0 gallons. We can	'design' for 40,00	00 gal/week peak	usage. A typical t	ank size for				
Price NH3	\$350		ammonia distri temp/pressure	butors is 30,000 g maintenance), w	allons. So, with o could operate w	ine 30,000 gal tank with three a week d	(installed underg leliveries from 11,	ground for safety, 500 gal tank truck	security and ease	of				
Total NH3 cost \$		1,421,114	I'm sure the log	istics can/will be	optimized beyond	i that, but this will	do for illustration	n.						
Fuel cost for power,	\$ 0.125		Very rough pro Roughly \$1.5-\$		be about \$1.2 MM	A for ammonia M	egaNinja, \$0.1 MI	M for undergroun	d tank, connectio	ons and land.				
Price NATURAL GAS	\$15.00		With these deli	very assumptions	(1.75 MM gal am	monia/year), a 1.5	MW Meganinia	can be supplied 85	5% of the time (.1	3/.15). The unit				
Total Natural Gas cost \$		\$ 1,297,274	would be availa model this as	ble 100% of the t	ime (minus maint	enance) and could	be run at the cos	t of more frequer	nt ammonia delive	ries. We can				
Fuel cost for power for power, S/kwh from gas	5 0.114			is integrated into	the local electric	al grid, sells exces	nower into the g	rid and buys now	er from the grid w	then nower is				
power, S/kwh from gas	\$3.00		offered at below	w cost/value of lo	cal power and he	at supply. For example at power demain	mple, buying low	cost base load pov						
Total Gasoline cost \$		\$ 2,095,128	M	10. 16 5	6	for 7450 hrs for 1			of CHP heat (cr.)-	lated as 209. of				
Fuel cost for power,		2,095,128				e will assume con:								
S/kwh from gasoline	\$ 0.235													
Price LPG	\$2.00			1.75 mm tonnes										
Total LPG cost \$		\$ 1,900,232	residential cust	omers (especially	conservative in th	environments, the he winter). Sales (or avoided costs o	of gas/power purc	hases) of the pow					
Fuel cost for power, S/kwh from LPG	\$ 0.167					.57 MM for powe								
Price DIESEL	\$3.80		year that kwh a	re valued at high	er than \$0.11 per	even rejecting all t kwh, the generato	r can be operated	for additional pr	ofit. For example	in New				
Total Diesel cost \$		\$ 2,406,961	England/Middle	e Atlantic region,	retail electricity p	rices are uniformly at a margin of \$0.1	above \$0.16 per	kwh. So, if we ar	e running a 1500	kw unit for 15%				
Fuel cost for power, S/kwh from diesel	\$ 0.269					iness blind (i.e, sel				power sales				
Price COAL	550		loosely) Fuel cost at \$30											
Total Coal cost \$		\$ 211,137	Revenues from	85% base operat	ions (contracted a	t conservative pri-								
Fuel cost for power, S/kwh from coal	\$ 0.024			gin of \$680,000 to			+ - > 0,000							
Price ETHANOL	\$3.00		Upside potentia	al on these reven	Jes.									
Total Ethanol cost \$		\$ 3,081,787		Capacity payments from PJM RPM (market to pay for guaranteed capacity in PJM grid). In New York, this is about \$200 per MW (paid whether the unit is running or not). This is \$73,000 per year.										
Fuel cost for power,	\$ 0.271							- Balland						
S/kwh from ethanol MegaTonnes CO2 saved with NH3 with harvest vs	5.508-07	0				n the grid (this pov ent, price spikes fi			provided power (no rísk from gas				
GAS		0									I			

Local Energy Station Dispensing 1.75 Mm Gals Per Year Of Ammonia

A typical high volume gasoline station can easily dispense 1.5 MM gallons of multiple grades of gasoline/diesel in a year. This case examines a 'neighborhood' ammonia energy station of approximately the same scale that could provide power and heat to the neighborhood (or condo or office building) in an urban environment. This station would house a diesel genset/CHP unit running on ammonia. The prototype for this is the MHI MegaNinja gas-driven genset (delivered on 40' trailer, 1.5 MW generator operating at 42.5% efficiency, designed for combined heat/power taking efficiency up to 75% for medium pressure steam/space and water heating and adsorptive air conditioning.)

The general complexity of these stations would be less than a gasoline station (single grade, dispensed almost entirely to the generators instead of retail interface with hundreds of transactions to untrained public per day). But tank volume, general regulatory requirements and fuel delivery logistics would be similar.

The average weekly volume would be about 35,000 gallons. We can 'design' for 40,000 gal/week peak usage. A typical tank size for ammonia distributors is 30,000 gallons. So, with one 30,000 gal tank (installed underground for safety, security and ease of temp/pressure maintenance), we could operate with three a week deliveries from 11,500 gal tank trucks (typical size ammonia trucks). I'm sure the logistics can/will be optimized beyond that, but this will do for illustration.

Ľυ

- Very rough project costs would be about \$1.2 MM for ammonia MegaNinja, \$0.1 MM for underground tank, connections and land. Roughly \$1.5-\$2 MM.
- With these delivery assumptions (1.75 MM gal ammonia/year), a 1.5 MW Meganinja can be supplied 85% of the time (.13/.15). The unit would be available 100% of the time (minus maintenance) and could be run at the cost of more frequent ammonia deliveries. We can model this as
- A CHP unit that is integrated into the local electrical grid, sells excess power into the grid and buys power from the grid when power is offered at below cost/value of local power and heat supply. For example, buying low cost base load power at night from utility based on TOD pricing and operating during the day to ease peak power demand on the utility's peakers)
- Runs 85% of the time routinely (providing 1.5 MW for 7450 hrs for 11,200,000 kwh and 26,000 mmbtu of CHP heat (calculated as 30% of the mmbtu's in the 1.75 mm gal of ammonia)). We will assume conservatively that 15,000 mmbtu of that heat would be effectively used or sold.
- At \$300/tonne, 1.75 mm tonnes of ammonia costs \$1.2 MM
- If we assume New England/Middle Atlantic urban environments, then \$0.14 per kwh and \$14 per MMBTU are conservative prices for residential customers (especially conservative in the winter). Sales (or avoided costs of gas/power purchases) of the power and CHP heat from 85% operation at these prices would yield \$1.57 MM for power and \$0.21 MM for heat for a total of \$1.78 MM.
- At \$300/tonne ammonia, the fuel cost for power (even rejecting all the CHP heat) is \$0.107 per kwh. So, for the additional 15% of the year that kwh are valued at higher than \$0.11 per kwh, the generator can be operated for additional profit. For example, in New England/Middle Atlantic region, retail electricity prices are uniformly above \$0.16 per kwh. So, if we are running a 1500 kw unit for 15% of a year (1300 hrs), we are selling 2,000,000 kwh at a margin of \$0.05 (bringing in \$100,000 extra revenue).
- Overview on very rough numbers running the business blind (i.e, selling at average prices, managing CHP heat and extra power sales loosely)
- Fuel cost at \$300/tonne \$1,200,000
- Revenues from 85% base operations (contracted at conservative prices) \$1,780,000
- Opportunistic sales of power for other 15% of generating capacity \$100,000
- Operating margin of \$680,000 to cover capex/opex/profit.

- Upside potential on these revenues.
- Capacity payments from PJM RPM (market to pay for guaranteed capacity in PJM grid). In New York, this is about \$200 per MW (paid whether the unit is running or not). This is \$73,000 per year.
- Potential payments from reliability premiums from the grid (this power is much more reliable than grid provided power (no risk from gas deliverability, downed power lines, frozen equipment, price spikes from hot summer afternoons, etc).
- Well positioned availability of reliable power can be very valuable during high stress in the grid (prices have spiked above \$1000/MWh and \$100 per mmbtu on several occasions over the last few years). This value can be captured via market/auction transactions on advanced grid markets like RPM or through opportunistic transactions in real time.
- Upside revenue potential for similar projects in other regions of the world. Examples:
- Island economies that must generate their power from fuel oil (Hawaii, Caribbean, Indonesia). Fuel oil is \$30-\$40 per mmbtu. It is dirty and must be located away from populations (and especially resorts). That also makes it very difficult to capture and utilize the 1/3 of the btu's from CHP that clean ammonia engines can provide. These units can provide clean power at less than half the cost and, on top of that, very efficient heat and air conditioning (absorptive chilling).
- Medium scale distribution/retail (frozen/refrigerated foods), light industry and agriculture utilizing refrigeration, medium pressure steam or drying (e.g., crops) that place high value on the associated heat)
- Regions that place high value on pure water (exhaust from ammonia MegaNinja is water and nitrogen. Pure water can be captured at the cost of condensing the water.) Combustion of 1.75 MM gallons of ammonia generates about 1.7 MM gallons of water.
- They will be very attractive to sites willing and able to pay large premiums for locally controlled, uninterruptible power (financial/business centers, server farms, hospitals.
- military/government installations, large research facilities/research universities)
- Regions that are imposing a cost on CO2 emissions (e.g., California) can reduce or eliminate those costs.

- This is potentially a very positive development for utilities, local/regional government (e.g., PJM and RPM) for:
- Predictable standby reserve available on 5 minute call-up (with right incentives and minimally sophisticated 'smart grid' controls) (much cheaper and much more flexible than spinning reserve CCGT that is only used as gas prices are rising above \$40/mmbtu)
- Distributed and potentially very substantial regional fuel reserve for mid-winter, late summer, regional security (much cheaper (pseudo-'free') than natural gas storage and much more flexible)
- This is potentially a very positive development for property managers and energy customers
- More predictable/controllable pricing through contract and/or arbitrage at regional or urban level with ammonia producers/gas monetizers. And significantly lower than market prices over the last five years.
- Lots of headroom for optimization for profits. Project design for medium pressure steam, space heating, hot water heating, drying operations (e.g., crops), heat driven chillers (air conditioning, refrigeration for food distribution and retailing)
- This is potentially a very positive development for urban governments
- Distributed, secure energy storage for reliable power within the city
- Very clean power generation (zero carbon as well as zero traditional pollutants)
- Initial infrastructure for ammonia fuel for buses, delivery trucks, taxis, govt vehicles etc for superclean transport in cities (much cheaper than CNG or electric, much, much cheaper than hydrogen)

How Does This All Get Started?

- Market demonstration at 1-10 MW scale (diesel gen, refit, new optimized, blends)
- Tech/market demo at 25-50 MW scale (repowering coal/fuel oil boilers)
- Engage ammonia producers/investors
 - New build guaranteed offtake (some fraction of production)
 - Eventually, utility plants with guaranteed returns for fuel take or pay (with perhaps shared profits for joint sales into market after satisfaction of energy market contractual requirements)
 - Market, regulatory, technology demo support from self selected producers
 - Plant technology/engineering firms (KBR, Uhde, MHI, etc) that will benefit from increased building
- Low cost, high CO2 value areas for low carbon, low cost fuels
- Accelerate demo/commercialization of power to NH3 technologies
 - Compile list of potentially interested investors, green funding, etc for incipient technologies for investments in the range of \$5-\$20 MM for FEED, critical demoes or initial deployment in regions for low cost "stranded" power (i.e., Canada, Iceland)
 - Competition for proposals for ammonia from power, perhaps with funding from such entities (NH3Fual Association as clearinghouse??)
- Future Search with engaged stakeholders sponsored by CATF

