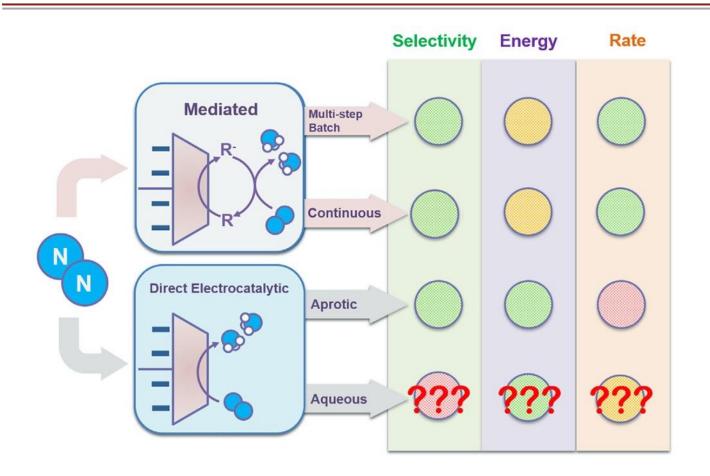


Whither Aqueous Electro-reduction of Nitrogen to Ammonia?

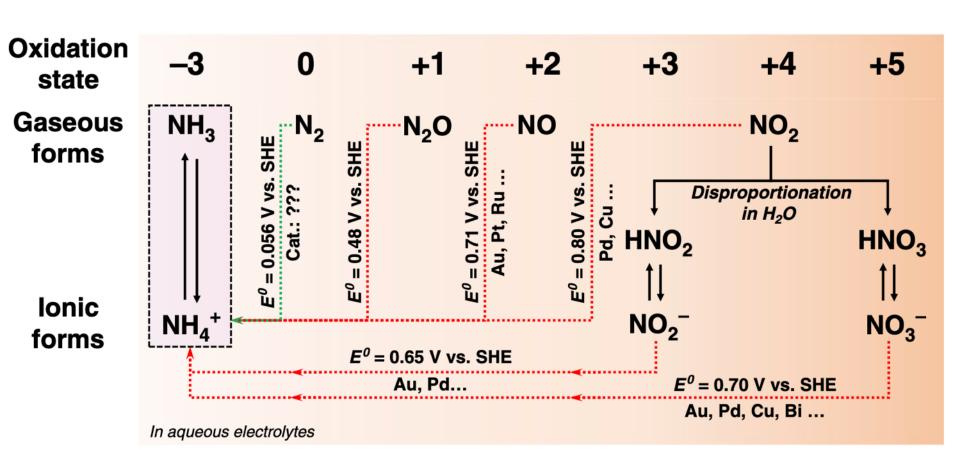
or

NRR and The Holy Grail



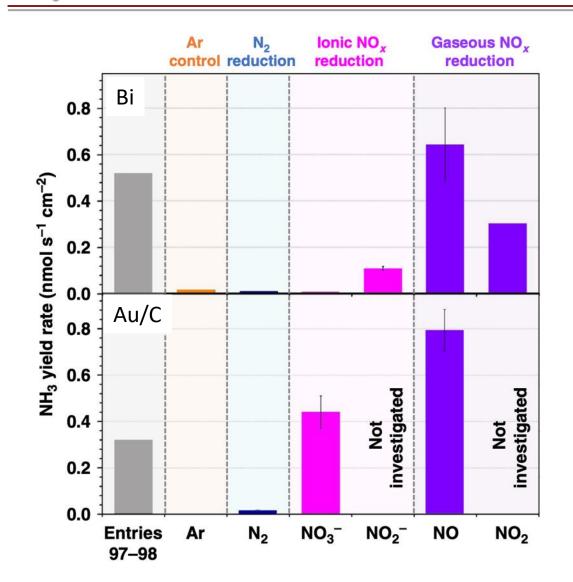
Approaches to Ambient Temperature $N_2 --> NH_3$

MacFarlane et al Joule 2020


Aqueous NRR – Current Status

Many reports.....but!!!

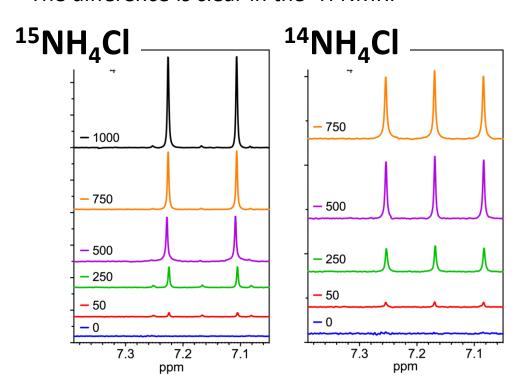
- > Selectivity rarely > 20% (not practical versus Gen 2)
- Yields so low => prone to false positives
- Often using huge volumes of N₂ gas
 very small amounts of Nox's problematical
- Papers are now being refuted:
 - Du et al. ACS Sust Chem. Eng. 2019.
 - Hu et al. ACS Energy Lett. 2019 & Editor's Commentary
 - Has et al Nature Cat 2019 Matters Arising 2020
 - Choi et al Nature Comms 2020

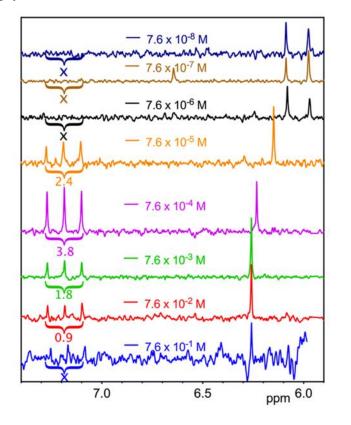

The "Richness" of Nitrogen Chemistry!



Choi et al *Nat Comm* 2020 Choi et al *ACS Energy Letters* 2020

=> Frustratingly False Positives!


A very frustrated Jay Choi


¹⁵N₂ studies important to prove NRR.....

.....but not foolproof

The difference is clear in the ¹H NMR:

But it depends critically on conditions Eg pH:

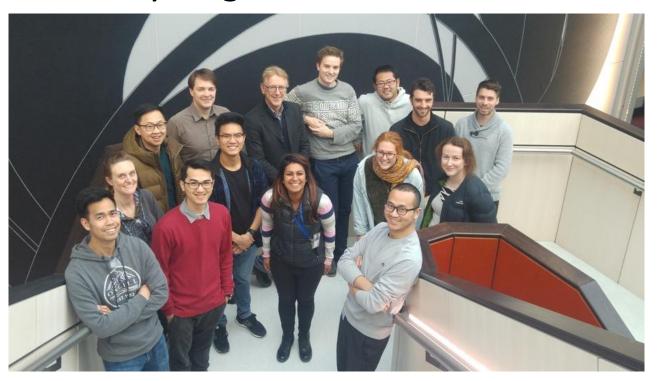
Hodgetts et al ACS Energy Lett 2020

ARC Centre of Excellence for Electromaterials A Traffic Light Analysis of Literature Science

No.	Year	Material	N-based material	Electrolyte	E (V vs. RHE)	FE (%)	Yield rate (nmol s ⁻¹ cm ⁻²)	Quantitative 15N ₂ test	NO _x control	Ref.
19	2018	Fe/Fe ₃ O ₄	N	0.1 M PBS	-0.3	8.3	0.003	N	N	19
20	2018	Ag	N	0.1 M HCI	-0.6	4.8	0.046	N	N	20
21	2018	С	N	0.1 M Na ₂ SO ₄	-0.3	6.9	0.26	N	N	21
22	2018	NbO ₂	N	0.05 M H ₂ SO ₄	-0.65	20	0.19	N	N	22
23	2018	Y ₂ O ₃	N	0.1 M Na ₂ SO ₄	-0.9	2.5	0.11	N	N	23
24	2018	d-MoS ₂	Y	0.1 M Na ₂ SO ₄	-0.4	8.3	0.19	N	N	24
25	2018	Au/CN _x	Y	0.1 M HCI	-0.2	12	0.038	N	N	25
26	2018	Au/C ₃ N ₄	Y	0.005 M H ₂ SO ₄	-0.1	11	0.031	N	N	26
27	2018	Fe/N-CNT	Y	0.1 M KOH	-0.2	9.3	0.29	N	N	27
28	2018	B-TiO ₂	N	0.1 M Na ₂ SO ₄	-0.8	3.4	0.024	N	N	28
29	2018	B ₄ C	N	0.1 M HCI	-0.75	16	0.043	N	N	29
30	2018	Au	N	0.1 M HCI	-0.2	6.1	0.25	N	N	30
31	2018	Mn ₃ O ₄	N	0.1 M Na ₂ SO ₄	-0.8	3.0	0.038	N	N	31
32	2018	CNx	N	0.1 M HCI	-0.2	1.5	1.0	N	N	32
33	2018	SnO ₂	N	0.1 M Na ₂ SO ₄	-0.8	1.2	0.15	N	N	33
34	2018	TiO ₂	N	0.1 M Na ₂ SO ₄	-0.7	2.5	0.092	N	N	34
35	2018	VN	N	0.05 M H ₂ SO ₄	-0.2	6.5	0.50	N	N	35

Experimental Set-up & Protocols

Conclusion:


- Gas purification and analysis vital:
- H₂O (in aprotics)
- Nitrate/nitrite
- NO_x (all of them)
- NH₃
- ➤ See latest protocol commentary in Choi et al *Nat Comm* 2020

Acknowledgement\$\$

The Hydrogen/Ammonia Team

