Ammonia as a marine fuel

Creating the business case

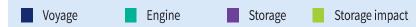
Ammonia Energy Association Conference 19th November 2020

Total cost of operation

The cost of e-ZEVs have a decreasing trend over time.

- Biofuels maybe more competitive in the short-term
- But lose this advantage as prices are expected to increase
- NG-ammonia is as competitive today as the most expensive biofuel
- Overall e-fuels become more competitive in the 2040s

Voyage-related costs


Fuel cost is a significant proportion of the overall TCO.

- The main cost driver is fuel price
- Hydrogen has a high capital cost of storage and a loss of cargo-carrying capacity which impacts revenue
- E-ammonia is lower than ehydrocarbons because the production processes are still under development and energy intensive
- A carbon price is essential to close the gap with fossil-based fuels

2050 (high price scenario)

Figures 4b – Relative cost implications of ZEV technologies for bulk carrier under high-price scenario and no carbon price.

Techno-economic assessment of zero-carbon fuels: LR/UMAS (2020)

Technology Readiness of Ammonia as a marine fuel

	Bunkering	Containment	LFSS & FGSS	Consumers	Safety
Current Status	 loading and unloading in terminals as a cargo procedures for loading as a fuel do not exist 	apply same as LNG as a fuel	apply same as LPG and or LNG as a fuel	none proven at marine full scale	 Toxicity Corrosivity Precluded as a fuel by IGC code
Technology readiness challenge	 vapour handling handling of leaked ammonia structure protection (Low temperature) 	environment control (e.g. inerting, dry air) of hold spaces	supply system to be developed for liquid and gas	ICE and Fuel cell under development	 venting and ventilation system toxic safety level (gas detection) engine safety concept (probability of leakage, purging) prevent gas release into atmosphere

38 ports export & 88 ports import ammonia globally Ammonia is currently shipped by 71 LPG tankers.

Regulatory readiness of Ammonia as a marine fuel

Safety & infrastructure		Tank to Wake Emissions Regulations					Carbon Pricing	Lifecycle GHG emissions			
Safety (SOLAS, IGF, IGC, MARPOL	Infrastructure	EEDI	EEXI	CII	Methane regulation	NOx regulation	SOx & PM	Based on operational carbon factor	Depends on how Ammonia is produced and primary energ to reduce carbon intensity of product		ergy source
Annex VI)							Gas & Coal for example	Gas with CCS for example	Renewable electricity		

Progress

Approvals

HAZID for NH3 fuelled 23k TEU Containership

HAZID for NH3 fuelled Aframax tanker

Approval in Principle NH3 23k TEU Containership

Approval in Principle NH3 fuelled Aframax tanker

Collaborations

Partnership

