An Electrochemical Haber-Bosch Process*

V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides

Aristotle University of Thessaloniki (AUTH) and Center for Research & Technology Hellas (CERTH)

Financial Support: CoorsTek Membrane Sciences

* JOULE, 4(1)pp. 142-158 (2020).

Industrial Ammonia Production

- Supports > 50% of earth's population
- High T, P \rightarrow High capital cost
- Responsible for 1-2% energy consumption and CO₂ emissions worldwide

The main steps in the NH₃ synthesis plant

Hydrogen production (highly endothermic)

Methane steam reforming:
$$CH_4 + H_2O \rightarrow CO + 3 H_2$$

Water gas shift: $CO + H_2O \rightarrow CO_2 + H_2$

- Preparation of synthesis gas (extreme purification)
- Pressurization (150-250 bar)
- \triangleright Ammonia synthesis (exothermic): $N_2 + 3H_2 \rightarrow 2 NH_3$

Overall Reaction:

$$3 CH_4 + 6 H_2O + 4 N_2 <==> 3 CO_2 + 8 NH_3$$

In industrial practice, the CO_2/NH_3 molar ratio is about 1.1 (instead of 0.4)

Plants and bacteria produce NH₃ at ambient conditions (nitrogenase, N₂, H⁺, e⁻)

Discovery* and development of high temperature H⁺ conductors

Development * * of ceramic membrane reactors with high H⁺ conductivity

- High H⁺ conductivity (10^{-6} moles H₂ cm⁻² s⁻¹) at 450-700 °C
- ✓ The hydrogen source can be a hydrocarbon (e.g. steam reforming)

Electrolyte: Ba $Zr_{0.7}Ce_{0.2}Y_{0.1}O_{2.9}$ (BZCY72), thickness: 30 μ m

Counter Electrode: Ni-BZCY72, area: 20-25 cm⁻²

Working Electrode: VN-Fe, area: 8 cm⁻²

Tube length: 250 mm

^{*} H. Iwahara, et al, Solid State Ionics <u>4</u>, 359–363 (1981).

^{* *} S. Robinson, et al, J. Membr. Sci. 446 (2013) 99–105; W.G. Coors, A. Manerbino, J. Membr. Sci. 376 (2011) 50–55.

Combined SSAS and CH₄-H₂O reforming

- ➤ Methane conversion increases by H₂ removal (operation at lower T)
- Purification of hydrogen is eliminated

Results of the combined process

Summary of Experimental Results

At the anode:

Open-circuit: methane conversion > 60%

Closed-circuit: methane conversion up to 85%

Open-circuit: CO₂ selectivity up to 90%.

Closed-circuit: CO₂ selectivity > 99%.

At the cathode:

- NH₃ is formed at a rate of up to 1.95 x 10⁻⁹ mol·s⁻¹·cm⁻² with a corresponding Faradaic Efficiency of 5.5%.
- FEs up to 14% at lower current densities

Visualizing an electrochemical HB


```
SSAS Reactor: CH_4 + H_2O \leftrightarrow CO_2 + 6H^+ + 6e^- (anode)

N_2 + 6H^+ + 6e^- \leftrightarrow 2NH_3 (cathode)

2H^+ + 2e^- \leftrightarrow H_2 (cathode)
```

```
Protonic Ceramic Fuel Cell: H_2 \leftrightarrow 2H^+ + 2e^- (anode)

1/2O_2 + 2H^+ + 2e^- \leftrightarrow H_2O (cathode)

(The PCFC is assumed to operate at a 45% efficiency)
```

Electrochemical vs Industrial HB

> >35% FE is required to exhibit lower energy demands and CO₂ emissions than the industrial HB

What is the target

The "Giddey" Requirements¹

current density:
0.25-0.5 A cm⁻²

> current efficiency: >50%

 \rightarrow NH₃ is production rates: 4.3 - 8.7 x 10⁻⁷ mol cm⁻² s⁻¹

The DOE (REFUEL) Requirements²

current density:
0.3 A cm⁻²

> Faradaic efficiency: 90%

➤ NH₃ is production rates: 9.3 x10⁻⁷ mol cm⁻² s⁻¹

¹ S..Giddey et al, Int'l J. Hydrogen Energy 38, pp. 14576-14594 (2013)

² I.McPherson, J. Zhang, JOULE, 4, pp. 12-14 (2020)]

Increasing the Faradaic Efficiency to a 40-50% and the NH $_3$ production rate to 5 x 10⁻⁷ mol cm $^{-2}$ s $^{-1}$ is a real challenge. It will require intense collaboration among researchers in the fields of electrochemistry, heterogeneous catalysis and materials science.

But it is worth the effort...

Thank you for your attention!

Electrical energy demands

