

Electric Heating Solutions for SMR-Based Ammonia Plants

Presenter Overview

Dave Yeardye

Manager – Field Development and Application Engineering

Short Biography:

- Qualifications
 - B.Sc. Physics and Mathematics Dalhousie University, Halifax, Nova Scotia, Canada
 - 25+ years of experience in Industrial Electric Heating, including Production, Research and Development, and Engineered Sales
- Present Job and Responsibilities
 - Manager Field Development and Application Engineering
 - Front-end RFQ receipt and classification for Process Heating and Filtration Applications
 - Quote Preparation Specification Review, Conceptual Design, and Cost Estimation
- Special Work Interests
 - Electrification / Decarbonization of Process Heating Applications
 - Optimization of Work Processes
 - Talent Development

Electric Process Heaters Capabilities & Limitations

Application

Circulation heaters are mainly used for liquid and gas heating in closed or open loop systems.

Widely used in heat transfer systems, regeneration, gas treatment, heat efficiency systems, steam super heating, and recirculation processes.

Typical Process fluids:

- Water heating
- Hydrocarbons liquids, heavy and light
- Hydrocarbon gases
- Acids
- Polymers
- Salts
- Air
- Inert gases
- Steam

Basic Specifications

- Power: Up to 5 MW per bundle
- Flange Size: Up to 60"
- Voltage: Up to 690 V
 MV up to 7200V Coming Soon
- Design pressures up to 5,000 PSI
- Process Temperatures up to 1,200°F
- Hazardous and non-hazardous areas.
- CSA / UL / ATEX / IEC Ex Approval

Typical Installations

- Regeneration heaters
- Fuel gas heating
- Crude oil recirculation
- Steam superheating
- Coker heaters
- Burner efficiency systems
- Reboilers and Vaporizers
- Seal gas heating

Electric Process Heaters Benefits of Electrification

Existing Technologies:

- 1. Costly Maintenance
- 2. Limited Temperature Control (temperature swing)
- 3. High Heat Flux Issues
- 4. Fugitive Emissions
- 5. Can lose power over time from fouling
- 6. Larger footprint
- 7. Higher maintenance
- 8. Slower response time

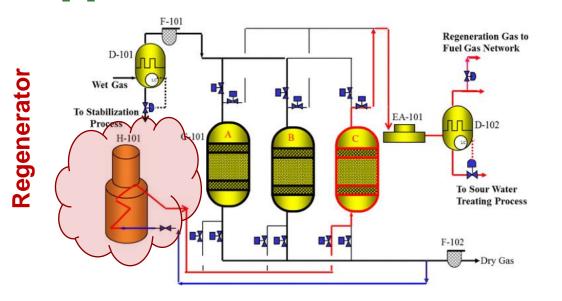
Direct Electric Heating:

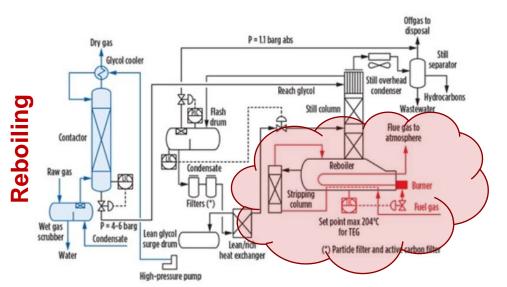
- 1. Eliminates Greenhouse Gas Emissions
- 2. Increases Energy Efficiency
- 3. Reduces Operational Costs
- 4. Allows for precise process duty control
- 5. 100% of power (as heat) transferred to the process

1MW (1,000kW)

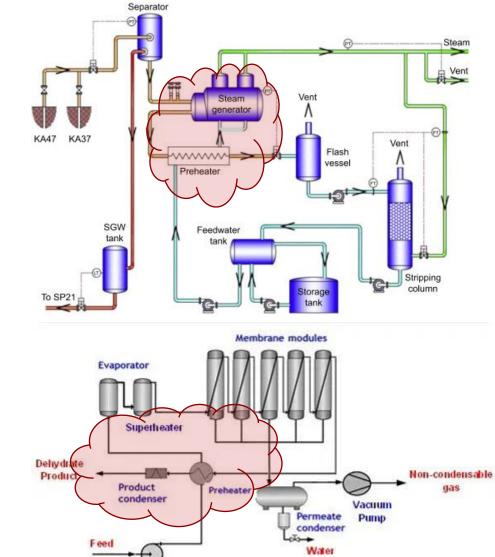
- 6. More compact design
- 7. Lower maintenance
- 8. Faster response time

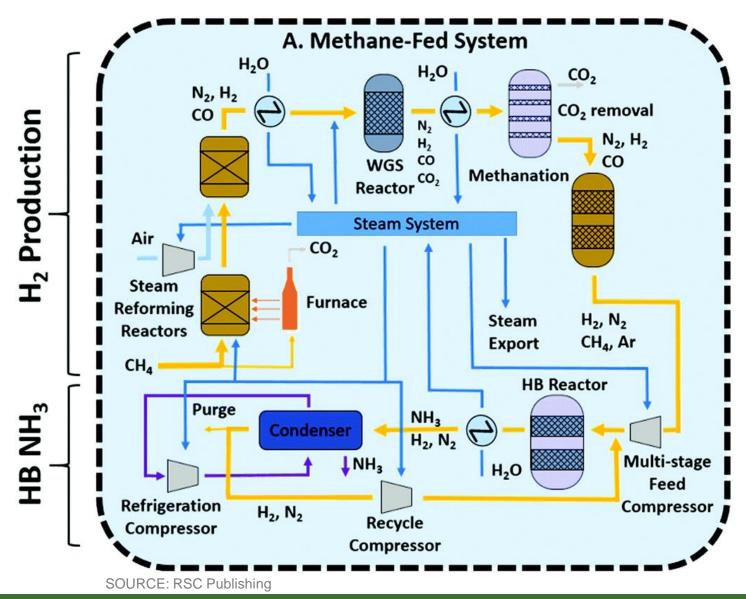
÷ 3412 BTU/hr/kW


4.25 MMBTU/hr



x 80% efficiency


Electric Process Heaters Application Overview


Dehydration

Preheaters

Feed

Process Flow Diagram Steam Methane Reforming w/ Haber Bosch

Example Applications that can be Retrofited:

- Pre-heater
- Steam Boiling & Superheating
- Heat Exchanger
- Gas Regeneration
- Separator
- NH₃ Storage
- Vaporizer
- DI Water Heater
- PSA Heaters
- Thermal Energy Storage using electric heaters for on-demand steam

HIGHLIGHTS

Project Name:

Replacement of 3 inline gas fired heaters for a Sulphur Recovery Unit (SRU)

Client: Refinery in Sweden

Description:

- Outlet temperature of 650°C
- 3 x 100kW, 400V

Features:

- Designed to match existing dimensions
- ATEX Ex d IIC T3 IP66
- NACE

Thank You